Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

K-groups of reciprocity functors


Authors: Florian Ivorra and Kay Rülling
Journal: J. Algebraic Geom. 26 (2017), 199-278
DOI: https://doi.org/10.1090/jag/678
Published electronically: September 23, 2016
Full-text PDF

Abstract | References | Additional Information

Abstract:

In this work we introduce reciprocity functors, construct the associated K-group functor of a family of reciprocity functors, which itself is a reciprocity functor, and compute it in several different cases. It may be seen as a first attempt to get close to the notion of reciprocity sheaves imagined by B. Kahn. Commutative algebraic groups, homotopy invariant Nisnevich sheaves with transfers, cycle modules or Kähler differentials are examples of reciprocity functors. As commutative algebraic groups do, reciprocity functors are equipped with symbols and satisfy a reciprocity law for curves.


References [Enhancements On Off] (What's this?)

  • [1] Reza Akhtar, Milnor $ K$-theory of smooth varieties, $ K$-Theory 32 (2004), no. 3, 269-291. MR 2114169 (2005k:19007), https://doi.org/10.1007/s10977-004-9124-y
  • [2] Emil Artin and John Tate, Class field theory, 2nd ed., Advanced Book Classics, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1990. MR 1043169 (91b:11129)
  • [3] H. Bass and J. Tate, The Milnor ring of a global field, Algebraic $ K$-theory, II: ``Classical'' algebraic $ K$-theory and connections with arithmetic (Proc. Conf., Seattle, Wash., Battelle Memorial Inst., 1972) Springer, Berlin, 1973, pp. 349-446. Lecture Notes in Math., Vol. 342. MR 0442061 (56 #449)
  • [4] Spencer Bloch, Algebraic cycles and higher $ K$-theory, Adv. in Math. 61 (1986), no. 3, 267-304. MR 852815 (88f:18010), https://doi.org/10.1016/0001-8708(86)90081-2
  • [5] Spencer Bloch and Hélène Esnault, The additive dilogarithm, Doc. Math. Extra Vol. (2003), 131-155 (electronic). Kazuya Kato's fiftieth birthday. MR 2046597 (2005e:19006)
  • [6] Spencer Bloch and Hélène Esnault, An additive version of higher Chow groups, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 3, 463-477 (English, with English and French summaries). MR 1977826 (2004c:14035), https://doi.org/10.1016/S0012-9593(03)00015-6
  • [7] F. Déglise, Modules homotopiques, Doc. Math. 16 (2011), 411-455 (French, with English summary). MR 2823365 (2012h:14053)
  • [8] Philippe Elbaz-Vincent and Stefan Müller-Stach, Milnor $ K$-theory of rings, higher Chow groups and applications, Invent. Math. 148 (2002), no. 1, 177-206. MR 1892848 (2003c:19001), https://doi.org/10.1007/s002220100193
  • [9] William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323 (99d:14003)
  • [10] Ofer Gabber, Letter to Bruno Kahn, 1998.
  • [11] Thomas Geisser and Marc Levine, The $ K$-theory of fields in characteristic $ p$, Invent. Math. 139 (2000), no. 3, 459-493. MR 1738056 (2001f:19002), https://doi.org/10.1007/s002220050014
  • [12] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231 (French). MR 0199181 (33 #7330)
  • [13] Toshiro Hiranouchi, Somekawa's $ K$-groups and additive higher Chow groups, http://arxiv.org/abs/1208.6455 (2012).
  • [14] Annette Huber and Bruno Kahn, The slice filtration and mixed Tate motives, Compos. Math. 142 (2006), no. 4, 907-936. MR 2249535 (2007e:14034), https://doi.org/10.1112/S0010437X06002107
  • [15] Reinhold Hübl and Ernst Kunz, On algebraic varieties over fields of prime characteristic, Arch. Math. (Basel) 62 (1994), no. 1, 88-96. MR 1249591 (94k:13005), https://doi.org/10.1007/BF01200444
  • [16] Luc Illusie, Complexe de deRham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 4, 501-661 (French). MR 565469 (82d:14013)
  • [17] Bruno Kahn, Foncteurs de Mackey à réciprocité, preprint. Available at http://arxiv.org/abs/1210.7577.
  • [18] Bruno Kahn, Nullité de certains groupes attachés aux variétés semi-abéliennes sur un corps fini; application, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), no. 13, 1039-1042 (French, with English summary). MR 1168531 (94b:19006)
  • [19] Bruno Kahn and Takao Yamazaki, Voevodsky's motives and Weil reciprocity, Duke Math. J. 162 (2013), no. 14, 2751-2796. MR 3127813, https://doi.org/10.1215/00127094-2381379
  • [20] Kazuya Kato, Milnor $ K$-theory and the Chow group of zero cycles, Applications of algebraic $ K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 241-253. MR 862638 (88c:14012), https://doi.org/10.1090/conm/055.1/862638
  • [21] Kazuya Kato and Henrik Russell, Modulus of a rational map into a commutative algebraic group, Kyoto J. Math. 50 (2010), no. 3, 607-622. MR 2723864 (2011j:14098), https://doi.org/10.1215/0023608X-2010-006
  • [22] Moritz Kerz, The Gersten conjecture for Milnor $ K$-theory, Invent. Math. 175 (2009), no. 1, 1-33. MR 2461425 (2010i:19004), https://doi.org/10.1007/s00222-008-0144-8
  • [23] Ernst Kunz, Kähler differentials, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1986. MR 864975 (88e:14025)
  • [24] Carlo Mazza, Vladimir Voevodsky, and Charles Weibel, Lecture notes on motivic cohomology, Clay Mathematics Monographs, vol. 2, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2006. MR 2242284 (2007e:14035)
  • [25] Yu. P. Nesterenko and A. A. Suslin, Homology of the general linear group over a local ring, and Milnor's $ K$-theory, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 121-146 (Russian); English transl., Math. USSR-Izv. 34 (1990), no. 1, 121-145. MR 992981 (90a:20092)
  • [26] Wayne Raskind and Michael Spiess, Milnor $ K$-groups and zero-cycles on products of curves over $ p$-adic fields, Compositio Math. 121 (2000), no. 1, 1-33. MR 1753108 (2002b:14007), https://doi.org/10.1023/A:1001734817103
  • [27] Maxwell Rosenlicht, A universal mapping property of generalized jacobian varieties, Ann. of Math. (2) 66 (1957), 80-88. MR 0088780 (19,579b)
  • [28] Markus Rost, Chow groups with coefficients, Doc. Math. 1 (1996), No. 16, 319-393 (electronic). MR 1418952 (98a:14006)
  • [29] Kay Rülling, The generalized de Rham-Witt complex over a field is a complex of zero-cycles, J. Algebraic Geom. 16 (2007), no. 1, 109-169. MR 2257322 (2007j:14006), https://doi.org/10.1090/S1056-3911-06-00446-2
  • [30] Jean-Pierre Schneiders, Quasi-abelian categories and sheaves, Mém. Soc. Math. Fr. (N.S.) 76 (1999), vi+134 (English, with English and French summaries). MR 1779315 (2001i:18023)
  • [31] Jean-Pierre Serre, Algèbre locale. Multiplicités, Cours au Collège de France, 1957-1958, rédigé par Pierre Gabriel. Seconde édition, 1965. Lecture Notes in Mathematics, vol. 11, Springer-Verlag, Berlin-New York, 1965 (French). MR 0201468 (34 #1352)
  • [32] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237 (82e:12016)
  • [33] Jean-Pierre Serre, Groupes algébriques et corps de classes, 2nd ed., Publications de l'Institut Mathématique de l'Université de Nancago [Publications of the Mathematical Institute of the University of Nancago], 7, Hermann, Paris, 1984 (French). Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], 1264. MR 907288 (88g:14044)
  • [34] Théorie des topos et cohomologie étale des schémas. Tome 3, Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. Lecture Notes in Mathematics, Vol. 305, Springer-Verlag, Berlin-New York, 1973 (French). MR 0354654 (50 #7132)
  • [35] M. Somekawa, On Milnor $ K$-groups attached to semi-abelian varieties, $ K$-Theory 4 (1990), no. 2, 105-119. MR 1081654 (91k:11052), https://doi.org/10.1007/BF00533151
  • [36] Andrei Suslin and Vladimir Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 117-189. MR 1744945 (2001g:14031)
  • [37] Vladimir Voevodsky, Cohomological theory of presheaves with transfers, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 87-137. MR 1764200
  • [38] Vladimir Voevodsky, Triangulated categories of motives over a field, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 188-238. MR 1764202
  • [39] Vladimir Voevodsky, Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not. 7 (2002), 351-355. MR 1883180 (2003c:14021), https://doi.org/10.1155/S107379280210403X
  • [40] Vladimir Voevodsky, Cancellation theorem, Doc. Math. Extra volume: Andrei A. Suslin sixtieth birthday (2010), 671-685. MR 2804268 (2012d:14035)
  • [41] Vladimir Voevodsky, Unstable motivic homotopy categories in Nisnevich and cdh-topologies, J. Pure Appl. Algebra 214 (2010), no. 8, 1399-1406. MR 2593671 (2011e:14041), https://doi.org/10.1016/j.jpaa.2009.11.005


Additional Information

Florian Ivorra
Affiliation: Institut de Recherche Mathématique de Rennes, UMR 6625 du CNRS, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France
Email: florian.ivorra@univ-rennes1.fr

Kay Rülling
Affiliation: Institut für Mathematik, Freie Universität Berlin, 14195 Berlin, Germany
Email: kay.ruelling@fu-berlin.de

DOI: https://doi.org/10.1090/jag/678
Received by editor(s): January 19, 2014
Received by editor(s) in revised form: September 5, 2014
Published electronically: September 23, 2016
Additional Notes: The first author acknowledges support from the DAAD (Deutscher Akademischer Austausch Dienst) during the preparation of this work and thanks M. Levine for providing an excellent working environment and making his stay at the University Duisburg-Essen possible. The second author was supported by the SFB/TR 45 “Periods, moduli spaces and arithmetic of algebraic varieties” of the DFG, by the ERC Advanced Grant 226257, and thanks the first author for an invitation to the University of Rennes in 2010
Article copyright: © Copyright 2016 University Press, Inc.

American Mathematical Society