Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Rational curves on elliptic surfaces


Author: Douglas Ulmer
Journal: J. Algebraic Geom. 26 (2017), 357-377
DOI: https://doi.org/10.1090/jag/680
Published electronically: August 26, 2016
Full-text PDF

Abstract | References | Additional Information

Abstract: We prove that a very general elliptic surface $ \mathcal {E}\to \mathbb{P}^1$ over the complex numbers with a section and with geometric genus $ p_g\ge 2$ contains no rational curves other than the section and components of singular fibers. Equivalently, if $ E/\mathbb{C}(t)$ is a very general elliptic curve of height $ d\ge 3$ and if $ L$ is a finite extension of $ \mathbb{C}(t)$ with $ L\cong \mathbb{C}(u)$, then the Mordell-Weil group $ E(L)=0$.


References [Enhancements On Off] (What's this?)

  • [BHT11] Fedor Bogomolov, Brendan Hassett, and Yuri Tschinkel, Constructing rational curves on K3 surfaces, Duke Math. J. 157 (2011), no. 3, 535-550. MR 2785829 (2012d:14061), https://doi.org/10.1215/00127094-1272930
  • [BT07] Fedor Bogomolov and Yuri Tschinkel, Algebraic varieties over small fields, Diophantine geometry, CRM Series, vol. 4, Ed. Norm., Pisa, 2007, pp. 73-91. MR 2349648 (2009c:14042)
  • [CD86] David Cox and Ron Donagi, On the failure of variational Torelli for regular elliptic surfaces with a section, Math. Ann. 273 (1986), no. 4, 673-683. MR 826466 (87h:14028), https://doi.org/10.1007/BF01472138
  • [CGGH83] James Carlson, Mark Green, Phillip Griffiths, and Joe Harris, Infinitesimal variations of Hodge structure. I, Compositio Math. 50 (1983), no. 2-3, 109-205. MR 720288 (86e:32026a)
  • [Cox90] David A. Cox, The Noether-Lefschetz locus of regular elliptic surfaces with section and $ p_g\ge 2$, Amer. J. Math. 112 (1990), no. 2, 289-329. MR 1047301, https://doi.org/10.2307/2374717
  • [Dol82] Igor Dolgachev, Weighted projective varieties, Group actions and vector fields (Vancouver, B.C., 1981) Lecture Notes in Math., vol. 956, Springer, Berlin, 1982, pp. 34-71. MR 704986 (85g:14060), https://doi.org/10.1007/BFb0101508
  • [Har77] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157 (57 #3116)
  • [Kol96] János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180 (98c:14001)
  • [Lan86] Serge Lang, Hyperbolic and Diophantine analysis, Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 2, 159-205. MR 828820, https://doi.org/10.1090/S0273-0979-1986-15426-1
  • [Mir81] Rick Miranda, The moduli of Weierstrass fibrations over $ {\bf P}^{1}$, Math. Ann. 255 (1981), no. 3, 379-394. MR 0615858, https://doi.org/10.1007/BF01450711
  • [Pak11] F. Pakovich, Algebraic curves $ P(x)-Q(y)=0$ and functional equations, Complex Var. Elliptic Equ. 56 (2011), no. 1-4, 199-213. MR 2774592, https://doi.org/10.1080/17476930903394838
  • [Shi86] Tetsuji Shioda, An explicit algorithm for computing the Picard number of certain algebraic surfaces, Amer. J. Math. 108 (1986), no. 2, 415-432. MR 0833362, https://doi.org/10.2307/2374678
  • [Sil00] Joseph H. Silverman, A bound for the Mordell-Weil rank of an elliptic surface after a cyclic base extension, J. Algebraic Geom. 9 (2000), no. 2, 301-308. MR 1735774 (2001a:11107)
  • [Sti87] Peter F. Stiller, The Picard numbers of elliptic surfaces with many symmetries, Pacific J. Math. 128 (1987), no. 1, 157-189. MR 0883383
  • [Ulm07] Douglas Ulmer, $ L$-functions with large analytic rank and abelian varieties with large algebraic rank over function fields, Invent. Math. 167 (2007), no. 2, 379-408. MR 2270458 (2007k:11101), https://doi.org/10.1007/s00222-006-0018-x
  • [Ulm11] Douglas Ulmer, Elliptic curves over function fields, Arithmetic of $ L$-functions, IAS/Park City Math. Ser., vol. 18, Amer. Math. Soc., Providence, RI, 2011, pp. 211-280. MR 2882692
  • [Ulm14] Douglas Ulmer, Explicit points on the Legendre curve, J. Number Theory 136 (2014), 165-194. MR 3145329, https://doi.org/10.1016/j.jnt.2013.09.010
  • [Voi96] Claire Voisin, On a conjecture of Clemens on rational curves on hypersurfaces, J. Differential Geom. 44 (1996), no. 1, 200-213. MR 1420353


Additional Information

Douglas Ulmer
Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332
Email: ulmer@math.gatech.edu

DOI: https://doi.org/10.1090/jag/680
Received by editor(s): August 4, 2014
Published electronically: August 26, 2016
Article copyright: © Copyright 2016 University Press, Inc.

American Mathematical Society