Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

Request Permissions   Purchase Content 
 
 

 

A proof of the shuffle conjecture


Authors: Erik Carlsson and Anton Mellit
Journal: J. Amer. Math. Soc.
MSC (2010): Primary 05E10; Secondary 05E05, 05A30, 33D52
DOI: https://doi.org/10.1090/jams/893
Published electronically: November 30, 2017
Full-text PDF
View in AMS MathViewer New

Abstract | References | Similar Articles | Additional Information

Abstract: We present a proof of the compositional shuffle conjecture by Haglund, Morse and Zabrocki [Canad. J. Math., 64 (2012), 822-844], which generalizes the famous shuffle conjecture for the character of the diagonal coinvariant algebra by Haglund, Haiman, Loehr, Remmel, and Ulyanov [Duke Math. J., 126 (2005), 195-232]. We first formulate the combinatorial side of the conjecture in terms of certain operators on a graded vector space $ V_*$ whose degree zero part is the ring of symmetric functions $ \operatorname {Sym}[X]$ over $ \mathbb{Q}(q,t)$. We then extend these operators to an action of an algebra $ \tilde {\mathbb{A}}$ acting on this space, and interpret the right generalization of the $ \nabla $ using an involution of the algebra which is antilinear with respect to the conjugation $ (q,t)\mapsto (q^{-1},t^{-1})$.


References [Enhancements On Off] (What's this?)

  • [BGHT99] F. Bergeron, A. M. Garsia, M. Haiman, and G. Tesler, Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions, Methods Appl. Anal. 6 (1999), no. 3, 363-420. Dedicated to Richard A. Askey on the occasion of his 65th birthday, Part III. MR 1803316
  • [BGLX14] Francois Bergeron, Adriano Garsia, Emily Sergel Leven, and Guoce Xin, Compositional $ (km,kn)$-shuffle conjectures, Int. Math. Res. Not. IMRN 14 (2016), 4229-4270. MR 3556418
  • [BKR01] Tom Bridgeland, Alastair King, and Miles Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), no. 3, 535-554. MR 1824990
  • [EHKK03] E. S. Egge, J. Haglund, K. Killpatrick, and D. Kremer, A Schröder generalization of Haglund's statistic on Catalan paths, Electron. J. Combin. 10 (2003), Research Paper 16, 21. MR 1975766
  • [GH96] A. M. Garsia and M. Haiman, A remarkable $ q,t$-Catalan sequence and $ q$-Lagrange inversion, J. Algebraic Combin. 5 (1996), no. 3, 191-244. MR 1394305
  • [GH02] A. M. Garsia and J. Haglund, A proof of the $ q,t$-Catalan positivity conjecture, Discrete Math. 256 (2002), no. 3, 677-717. LaCIM 2000 Conference on Combinatorics, Computer Science and Applications (Montreal, QC). MR 1935784
  • [GHT99] A. M. Garsia, M. Haiman, and G. Tesler, Explicit plethystic formulas for Macdonald $ q,t$-Kostka coefficients, Sém. Lothar. Combin. 42 (1999), Art. B42m, 45. The Andrews Festschrift (Maratea, 1998). MR 1701592
  • [GN15] Eugene Gorsky and Andrei Neguţ, Refined knot invariants and Hilbert schemes, J. Math. Pures Appl. (9) 104 (2015), no. 3, 403-435 (English, with English and French summaries). MR 3383172
  • [GORS14] Eugene Gorsky, Alexei Oblomkov, Jacob Rasmussen, and Vivek Shende, Torus knots and the rational DAHA, Duke Math. J. 163 (2014), no. 14, 2709-2794. MR 3273582
  • [GXZ12] A. M. Garsia, G. Xin, and M. Zabrocki, Hall-Littlewood operators in the theory of parking functions and diagonal harmonics, Int. Math. Res. Not. IMRN 6 (2012), 1264-1299. MR 2899952
  • [Hag03] J. Haglund, Conjectured statistics for the $ q,t$-Catalan numbers, Adv. Math. 175 (2003), no. 2, 319-334. MR 1972636
  • [Hag04] J. Haglund, A proof of the $ q,t$-Schröder conjecture, Internat. Math. Res. Notices 11 (2004), 525-560.
  • [Hag08] James Haglund, The $ q$,$ t$-Catalan numbers and the space of diagonal harmonics, University Lecture Series, vol. 41, American Mathematical Society, Providence, RI, 2008. With an appendix on the combinatorics of Macdonald polynomials. MR 2371044
  • [Hai01] Mark Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001), no. 4, 941-1006. MR 1839919
  • [Hai02] Mark Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math. 149 (2002), no. 2, 371-407. MR 1918676
  • [HHL05a] J. Haglund, M. Haiman, and N. Loehr, A combinatorial formula for Macdonald polynomials, J. Amer. Math. Soc. 18 (2005), no. 3, 735-761. MR 2138143
  • [HHL$+$05b] J. Haglund, M. Haiman, N. Loehr, J. B. Remmel, and A. Ulyanov, A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J. 126 (2005), no. 2, 195-232. MR 2115257
  • [Hic12] Angela S. Hicks, Two parking function bijections: a sharpening of the $ q$, $ t$-Catalan and Shröder theorems, Int. Math. Res. Not. IMRN 13 (2012), 3064-3088. MR 2946232
  • [Hik14] Tatsuyuki Hikita, Affine Springer fibers of type $ A$ and combinatorics of diagonal coinvariants, Adv. Math. 263 (2014), 88-122. MR 3239135
  • [HL05] J. Haglund and N. Loehr, A conjectured combinatorial formula for the Hilbert series for diagonal harmonics, Discrete Math. 298 (2005), no. 1-3, 189-204. MR 2163448
  • [HMZ12] J. Haglund, J. Morse, and M. Zabrocki, A compositional shuffle conjecture specifying touch points of the Dyck path, Canad. J. Math. 64 (2012), no. 4, 822-844. MR 2957232
  • [LN14] Nicholas A. Loehr and Elizabeth Niese, New combinatorial formulations of the shuffle conjecture, Adv. in Appl. Math. 55 (2014), 22-47. MR 3176715
  • [Mac95] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
  • [Neg13] Andrei Negut, The shuffle algebra revisited, Int. Math. Res. Not. IMRN 22 (2014), 6242-6275. MR 3283004
  • [SV11] O. Schiffmann and E. Vasserot, The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials, Compos. Math. 147 (2011), no. 1, 188-234. MR 2771130
  • [SV13] Olivier Schiffmann and Eric Vasserot, The elliptic Hall algebra and the $ K$-theory of the Hilbert scheme of $ \mathbb{A}^2$, Duke Math. J. 162 (2013), no. 2, 279-366. MR 3018956

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 05E10, 05E05, 05A30, 33D52

Retrieve articles in all journals with MSC (2010): 05E10, 05E05, 05A30, 33D52


Additional Information

Erik Carlsson
Affiliation: International Centre for Theoretical Physics, Str. Costiera, 11, 34151 Trieste, Italy
Address at time of publication: Department of Mathematics, University of California, Davis, 1 Shields Ave., Davis, California 95616
Email: ecarlsson@math.ucdavis.edu

Anton Mellit
Affiliation: International Centre for Theoretical Physics, Str. Costiera, 11, 34151 Trieste, Italy
Address at time of publication: Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
Email: anton.mellit@univie.ac.at

DOI: https://doi.org/10.1090/jams/893
Received by editor(s): March 29, 2016
Received by editor(s) in revised form: August 29, 2017, and October 11, 2017
Published electronically: November 30, 2017
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society