Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Local smoothing properties of dispersive equations

Authors: P. Constantin and J.-C. Saut
Journal: J. Amer. Math. Soc. 1 (1988), 413-439
MSC: Primary 35Q20; Secondary 35D10
MathSciNet review: 928265
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] L. Abdelouhab, J. Bona, M. Felland, and J. C. Saut, Nonlocal models for nonlinear dispersive waves, Physica D, 1987.
  • [2] M. Balabane, On a regularizing effect of Schrödinger type groups, Prè-publications mathématiques, Université Paris-Nord, no. 68, 1986.
  • [3] M. Balabane and H. A. Emami-rad, $ {L^p}$ estimates for Schrödinger evolution equations, Trans. Amer. Math. Soc. 292 (1985), 357-373. MR 805968 (87e:35050)
  • [4] T. Cazenave and F. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in $ {H^1}$, preprint. MR 952091 (89j:35114)
  • [5] P. Constantin and J. C. Saut, Effets régularisants locaux pour des équations dispersives générales, C.R. Acad. Sci. Paris, Sér. I, 304 (1987), 407-410. MR 888234 (88d:35092)
  • [6] J. A. Gear and R. Grimshaw, Weak and strong interactions between internal solitary waves, Stud. Appl. Math., Elsevier, New York, LXX (1984), 235-258. MR 742590 (85i:76013)
  • [7] J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré. Anal. Non Linéaire, Vol. 2, no. 4, 1985, pp. 309-327. MR 801582 (87b:35150)
  • [8] N. Hayashi, K. Nakamitsu, and M. Tsutsumi, On solutions of the initial value problem for the nonlinear Schrödinger equation, J. Funct. Anal. 71 (1987), 218-245. MR 880978 (88e:35162)
  • [9] -, On solutions of the initial value problem for the nonlinear Schrödinger equation in one space dimension, Math. Z. 192 (1986), 637-650. MR 847012 (88b:35175)
  • [10] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Stud. Appl. Math. Adv. in Math. Supplementary Studies 18 (1983), 93-128. MR 759907 (86f:35160)
  • [11] -, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré. Phys. Théor. 46 (1987), 113-129.
  • [12] A. K. Liu, Interactions of solitary waves in stratified fluids, Advances in Nonlinear Waves (L. Debnath, ed.), Vol. I, Research Notes in Mathematics, No. 95, Pitman, Boston, 1986, pp. 108-117. MR 747825
  • [13] P. Olver, Hamiltonian and nonhamiltonian models for water waves, Lecture Notes in Physics, no. 195, Springer-Verlag, Berlin and New York, 1984, pp. 273-290. MR 755731 (85k:58036)
  • [14] J. C. Saut, Sur quelques équations généralisant l'équation de Korteweg-de Vries, J. Math. Pures Appl. 58 (1979), 21-61. MR 533234 (82m:35133)
  • [15] P. Sjölin, Regularity of solutions to the Schrödinger equations, Uppsala University, Dept. of Math., Report no. 1986-14.
  • [16] E. M. Stein, Singular integrals and dfferentiability properties of functions, Princeton Univ. Press, Princeton, N.J., 1970. MR 0290095 (44:7280)
  • [17] R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705-714. MR 0512086 (58:23577)
  • [18] G. B. Whitham, Linear and nonlinear waves, Wiley, New York, 1974. MR 0483954 (58:3905)
  • [19] K. Yajima, Existence of solutions of Schrödinger evolution equations, Comm. Math. Phys. 110 (1987), 415-426. MR 891945 (88e:35048)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 35Q20, 35D10

Retrieve articles in all journals with MSC: 35Q20, 35D10

Additional Information

Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society