Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

The invariant trace formula. II. Global theory


Author: James Arthur
Journal: J. Amer. Math. Soc. 1 (1988), 501-554
MSC: Primary 22E55; Secondary 11F72
DOI: https://doi.org/10.1090/S0894-0347-1988-0939691-8
Part I: J. Amer. Math. Soc. (1988), 323-383
MathSciNet review: 939691
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. Arthur, (a) A trace formula for reductive groups. I: Terms associated to classes in $ G(\mathbb{Q})$, Duke Math. J. 45 (1978), 911-952. (b) A trace formula for reductive groups. II: Applications of a truncation operator, Comp. Math. 40 (1980), 81-121. (c) The trace formula in invariant form, Ann. of Math. (2) 114 (1981), 1-74. (d) On a family of distributions obtained from Eisenstein series. I: Application of the Paley-Wiener theorem, Amer. J. Math. 104 (1982), 1243-1288. (e) On a family of distributions obtained from Eisenstein series. II: Explicit formulas, Amer. J. Math. 104 (1982), 1289-1336. (f) A measure on the unipotent variety, Canad. J. Math. 37 (1985), 1237-1274. (g) On a family of distributions obtained from orbits, Canad. J. Math. 38 (1986), 179-214. (h) The local behaviour of weighted orbital integrals, Duke Math. J. 56 (1988), 223-293. (i) Intertwining operators and residues. I. Weighted characters, J. Funct. Anal. (to appear). (j) The invariant trace formula. I. Local theory, J. Amer. Math. Soc. 1 (1988), 323-383. MR 518111 (80d:10043)
  • [2] J. Arthur and L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Ann. of Math. Studies (to appear). MR 1007299 (90m:22041)
  • [3] J. Bernstein, $ P$-invariant distributions on $ GL(N)$ and the classification of unitary representations of $ GL(N)$ (non Archimedean case), Lecture Notes in Math., vol. 1041, Springer-Verlag, 1984, pp. 50-102. MR 748505 (86b:22028)
  • [4] J. Bernstein and P. Deligne, Le ``centre'' de Bernstein, Représentations des Groupes Réductifs sur un Corps Local, Hermann, Paris, 1984, pp. 1-32. MR 771671 (86e:22028)
  • [5] J. Bernstein, P. Deligne, and D. Kazhdan, Trace Paley-Wiener theorem for reductive $ p$-adic groups, J. Analyse Math. 47 (1986), 180-192. MR 874050 (88g:22016)
  • [6] L. Clozel and P. Delorme, (a) Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs, Invent. Math. 77 (1984), 427-453. (b) Sur le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs réels, C. R. Acad. Sci. Paris Sér. I 11 (1985), 331-333. MR 759263 (86b:22015)
  • [7] L. Clozel, J. P. Labesse, and R. P. Langlands, Morning seminar on the trace formula, Lecture Notes, Institute for Advanced Study, Princeton, N. J., 1984.
  • [8] P. Deligne, D. Kazhdan, and M. F. Vignéras, Représentations des algèbres centrales simples $ p$-adic, Représentations des Groupes Réductifs sur un Corps Local, Hermann, Paris, 1984, pp. 33-117.
  • [9] Harish-Chandra, (a) Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958), 241-310. (b) Harmonic analysis on real reductive groups. II. Wave packets in the Schwartz space, Invent. Math. 36 (1976), 1-55. (c) Admissible invariant distributions on reductive $ p$-adic groups, Queen's Papers in Pure and Appl. Math. 48 (1978), 281-341. MR 0094407 (20:925)
  • [10] D. Kazhdan, Cuspidal geometry on $ p$-adic groups, J. Analyse Math. 47 (1986), 1-36. MR 874042 (88g:22017)
  • [11] R. Kottwitz, (a) Stable trace formula: Elliptic singular terms, Math. Ann. 275 (1986), 365-399. (b) Tamagawa numbers, preprint. MR 858284 (88d:22027)
  • [12] R. P. Langlands, On the functional equations satisfied by Eisenstein series, Lecture Notes in Math., vol. 544, Springer-Verlag, 1976. MR 0579181 (58:28319)
  • [13] M. Raïs, Action de certains groupes dans des espaces de fonctions $ {C^\infty }$, Lecture Notes in Math., vol. 466, Springer-Verlag, 1975, pp. 147-150. MR 0436205 (55:9153)
  • [14] J. Rogawski, The trace Paley-Wiener theorem in the twisted case, Trans. Amer. Math. Soc. (to appear). MR 957068 (89k:22035)
  • [15] D. Vogan, The unitary dual of $ GL(n)$ over an Archimedean field, Invent. Math. 83 (1986), 449-505. MR 827363 (87i:22042)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 22E55, 11F72

Retrieve articles in all journals with MSC: 22E55, 11F72


Additional Information

DOI: https://doi.org/10.1090/S0894-0347-1988-0939691-8
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society