Representations of fundamental groups of manifolds with a semisimple transformation group

Author:
Robert J. Zimmer

Journal:
J. Amer. Math. Soc. **2** (1989), 201-213

MSC:
Primary 22E40; Secondary 22E45, 28D15, 57S20

DOI:
https://doi.org/10.1090/S0894-0347-1989-0973308-2

MathSciNet review:
973308

Full-text PDF

References | Similar Articles | Additional Information

**[1]**S. Adams and R. Spatzier,*Kazhdan groups, cocycles, and trees*(to appear). MR**1047300 (91c:22011)****[2]**A. Borel,*Stable real cohomology of arithmetic groups*, Ann. Sci. École Norm Sup. (4)**7**(1974), 235-272. MR**0387496 (52:8338)****[3]**-,*Stable real cohomology of arithmetic groups*, II, Progr. Math., Vol. 15, Birkhauser, Boston, 1981, pp. 21-55. MR**642850 (83h:22023)****[4]**A. Borel and N. Wallach,*Continuous cohomology, discrete subgroups, and representations of reductive groups*, Ann. of Math. Stud., Vol. 94, Princeton Univ. Press, Princeton, NJ, 1980. MR**554917 (83c:22018)****[5]**M. Gromov,*Rigid transformation groups*(to appear). MR**955852 (90d:58173)****[6]**F. E. A. Johnson,*On the existence of irreducible discrete subgroups in isotypic Lie groups of classical type*, Proc. London Math. Soc.**56**(1988), 51-77. MR**915530 (89f:22017)****[7]**A. Lubotzky and R. J. Zimmer,*Variants of Kazhdan's property for subgroups of semisimple groups*, Israel J. Math. (to appear). MR**1017168 (90i:22020)****[8]**W. Magnus,*Residually finite groups*, Bull. Amer. Math. Soc.**75**(1969), 306-316. MR**0241525 (39:2865)****[9]**R. J. Zimmer,*Induced and amenable actions of Lie groups*, Ann. Sci. École Norm. Sup. (4)**11**(1978), 407-428. MR**521638 (81b:22013)****[10]**-,*Strong rigidity for ergodic actions of semisimple Lie groups*, Ann. of Math. (2)**112**(1980), 511-529. MR**595205 (82i:22011)****[11]**-,*Orbit equivalence and rigidity of ergodic actions of Lie groups*, Ergodic Theory Dynamical Systems**1**(1981), 237-253. MR**661822 (84a:22019)****[12]**-,*Ergodic theory and semisimple groups*, Birkhauser, Boston, 1984. MR**776417 (86j:22014)****[13]**-,*Ergodic theory and the automorphism group of a**-structure*, Group representations, ergodic theory, operator algebras, and mathematical physics (C. C. Moore, ed.), Springer, New York, 1987, pp. 247-278. MR**880380 (88f:53060)****[14]**-,*Arithmeticity of holonomy groups of Lie foliations*, J. Amer. Math. Soc.**1**(1988), 35-58. MR**924701 (89c:22019)**

Retrieve articles in *Journal of the American Mathematical Society*
with MSC:
22E40,
22E45,
28D15,
57S20

Retrieve articles in all journals with MSC: 22E40, 22E45, 28D15, 57S20

Additional Information

DOI:
https://doi.org/10.1090/S0894-0347-1989-0973308-2

Article copyright:
© Copyright 1989
American Mathematical Society