Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

The asymptotic behavior of properly embedded minimal surfaces of finite topology


Authors: David Hoffman and William H. Meeks
Journal: J. Amer. Math. Soc. 2 (1989), 667-682
MSC: Primary 53A10; Secondary 49F10
DOI: https://doi.org/10.1090/S0894-0347-1989-1002088-X
MathSciNet review: 1002088
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] M. Anderson, Curvature estimates for minimal surfaces, Ann. Sci. École Norm. Sup. 18 (1985), 89-105. MR 803196 (87e:53098)
  • [2] L. Barbosa and M. do Carmo, On the size of a stable minimal surface in $ {{\mathbf{R}}^3}$, Amer. J. Math. 19 (1976), 515-528. MR 0413172 (54:1292)
  • [3] M. Callahan, D. Hoffman, and W. H. Meeks III, Embedded minimal surfaces with four ends, 1989, preprint.
  • [4] -, The structure of singly-periodic minimal surfaces, Invent. Math. (to appear). MR 1032877 (92a:53005)
  • [5] C. Costa, Example of a complete minimal immersion in $ {{\mathbf{R}}^3}$ of genus one and three embedded ends, Bol. Soc. Brasil. Mat. 15 (1984), 47-54. MR 794728 (87c:53111)
  • [6] Y. Fang and W. Meeks, Some global properties of complete minimal surfaces in $ {{\mathbf{R}}^3}$, Topology (to appear). MR 1081931 (92g:53008)
  • [7] D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in $ 3$-manifolds, Invent. Math. 82 (1985), 121-132. MR 808112 (87b:53090)
  • [8] D. Hoffman and W. H. Meeks III, One-parameter families of embedded minimal surfaces, 1989, preprint.
  • [9] -, Properly embedded minimal surfaces of finite topology, Ann. of Math. (2) (to appear). MR 2275628 (2008f:53008)
  • [10] -, The strong halfspace theorem for minimal surfaces, 1987, preprint.
  • [11] -, A variational approach to the existence of complete embedded minimal surfaces, Duke J. Math. 57 (1988), 877-893. MR 975126 (90c:53023)
  • [12] -, A complete embedded minimal surface with genus one, three ends and finite total curvature, J. Differential Geom. 21 (1985), 109-127. MR 806705 (87d:53008)
  • [13] -, Properties of properly embedded minimal surfaces of finite total curvature, Bull. Amer. Math. Soc. 17 (1987), 296-300. MR 903736 (88m:53014)
  • [14] L. Jorge and W. H. Meeks III, The topology of complete minimal surfaces of finite total Gaussian curvature, Topology 22 (1983), 203-221. MR 683761 (84d:53006)
  • [15] T. C. Kuo, On $ {C^\infty }$-sufficiency of sets of potential functions, Topology 8 (1969), 167-171. MR 0238338 (38:6614)
  • [16] W. H. Meeks III and H. Rosenberg, The global theory of doubly-periodic minimal surfaces, Invent. Math. (to appear). MR 1001845 (90m:53017)
  • [17] -, The strong maximum principle for complete minimal surfaces in flat $ 3$-manifolds, 1988, preprint.
  • [18] -, The geometry of periodic minimal surfaces, 1988, preprint.
  • [19] W. H. Meeks III and S. T. Yau, The topological uniqueness theorem for minimal surfaces of finite type, 1987, preprint.
  • [20] -, The classical Plateau problem and the topology of three-dimensional manifolds, Topology 21 (1982), 409-442. MR 670745 (84g:53016)
  • [21] -, The existence of embedded minimal surfaces and the problem of uniqueness, Math. Z. 179 (1982), 151-168. MR 645492 (83j:53060)
  • [22] R. Osserman, A survey of minimal surfaces, 2nd ed., Dover, New York, 1986. MR 852409 (87j:53012)
  • [23] J. Pitts and H. Rubenstein, Existence of minimal surfaces of bounded topological type in three-manifolds, Proc. Centre Math. Anal. Austral. Nat. Univ., Vol. 10, Canberra, Australia, 1987.
  • [24] R. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential Geom. 18 (1983), 791-809. MR 730928 (85f:53011)
  • [25] L. Simon, Lectures on geometric measure theory, Proc. Centre Math. Anal. Austral. Nat. Univ., Vol. 3, Canberra, Australia, 1983. MR 756417 (87a:49001)
  • [26] S. Smale, An infinite dimensional version of Sards theorem, Amer. J. Math. 87 (1965), 861-866. MR 0185604 (32:3067)
  • [27] B. White, New applications of mapping degree to minimal surface theory, J. Differential Geom. 29 (1989), 143-162. MR 978083 (90e:49051)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 53A10, 49F10

Retrieve articles in all journals with MSC: 53A10, 49F10


Additional Information

DOI: https://doi.org/10.1090/S0894-0347-1989-1002088-X
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society