Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Complete Kähler manifolds with zero Ricci curvature. I

Authors: G. Tian and Shing-Tung Yau
Journal: J. Amer. Math. Soc. 3 (1990), 579-609
MSC: Primary 53C55; Secondary 32C10, 53C25
MathSciNet review: 1040196
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [Bi] R. L. Bishop and R. J. Crittenden, Geometry of manifolds, Pure and Appl. Math., vol. 15, Academic Press, New York and London, 1964. MR 0169148 (29:6401)
  • [BPV] W. Barth, C. Peters, and A. van de Ven, Compact complex surfaces, Springer-Verlag, Berlin and Heidelberg, 1984. MR 749574 (86c:32026)
  • [CY] S. Y. Cheng and S. T. Yau, Inequality between Chern numbers of singular Kähler surfaces and characterization of orbit space of discrete group of $ SU(2,1)$, Contemp. Math. 49 (1986), 31-43. MR 833802 (87m:53078)
  • [GT] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer, Berlin, Heidelberg, and New York, 1977. MR 0473443 (57:13109)
  • [GW] R. E. Greene and H. Wu, Function theory on manifolds which possess a pole, Lecture Notes in Math., vol. 699, Springer-Verlag, 1979. MR 521983 (81a:53002)
  • [Ha] R. Hartshorne, Ample vector bundles, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 319-394. MR 0193092 (33:1313)
  • [Jo] J. Jost, Harmonic mappings between Riemannian manifolds, Australian National Univ., vol. 4, 1983. MR 756629 (86b:58030)
  • [Mi] J. W. Milnor, A note on curvature and fundamental group, J. Differential Geom. 2 (1968), 1-7. MR 0232311 (38:636)
  • [SY] Y. T. Siu and S. T. Yau, Complete Kähler manifolds with nonpositive curvature of faster than quadratic decay, Ann. of Math. (2) 105 (1977), 225-264. MR 0437797 (55:10719)
  • [TY] G. Tian and S. T. Yau, Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, Mathematical Aspects of String Theory (S. T. Yau, ed.), Proc. Conf. U.C.S.D., 1986, World Scientific, 1987. MR 915840
  • [Wu] H. Wu, Manifolds of partially positive curvature, Indiana Univ. Math. J. 36 (1987), 525-548. MR 905609 (88k:53068)
  • [Y1] S. T. Yau, Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold, Ann. Sci. Ecole. Norm. Sup. (4) 8 (1975), 487-507. MR 0397619 (53:1478)
  • [Y2] -, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equations. I*, Comm. Pure Appl. Math. 31 (1978), 339-411. MR 480350 (81d:53045)
  • [Y3] -, A general Schwartz lemma for Kähler manifolds, Amer. J. Math. 100 (1978), 197-203. MR 0486659 (58:6370)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 53C55, 32C10, 53C25

Retrieve articles in all journals with MSC: 53C55, 32C10, 53C25

Additional Information

Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society