Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Oscillation theorems for primes in arithmetic progressions and for sifting functions

Authors: John Friedlander, Andrew Granville, Adolf Hildebrand and Helmut Maier
Journal: J. Amer. Math. Soc. 4 (1991), 25-86
MSC: Primary 11N13; Secondary 11N25
MathSciNet review: 1080647
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [BFI] E. Bombieri, J. B. Friedlander, and H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math. 156 (1986), 203-251; II Math. Ann. 277 (1987), 361-393; III J. Amer. Math. Soc. 2 (1989), 215-224. MR 834613 (88b:11058)
  • [Bu] A. A. Buchstab, On an asymptotic estimate of the number of numbers of an arithmetic progression which are not divisible by relatively small prime numbers, Mat. Sb. (N.S.) 28 (1951), 165-184. (Russian) MR 0045756 (13:626h)
  • [CG] A. Y. Cheer and D. A. Goldston, A differential delay equation arising from the sieve of Eratosthenes, Math. Comp. 55 (1990), 129-161. MR 1023043 (90j:11091)
  • [Da] H. Davenport, Multiplicative number theory, 2nd ed., Springer-Verlag, New York, 1980. MR 606931 (82m:10001)
  • [E1] P. D. T. A. Elliott, Some applications of a theorem of Raikov to number theory, J. Number Theory 2 (1970), 22-55. MR 0258776 (41:3422)
  • [E2] -, Probabilistic number theory, Vol. I, Springer-Verlag, New York, 1979.
  • [EH] P. D. T. A. Elliott and H. Halberstam, A conjecture in prime number theory, Sympos. Math. IV Rome (1968-69), 59-72. MR 0276195 (43:1943)
  • [FG] J. Friedlander and A. Granville, Limitations to the equi-distribution of primes I, Ann. Math. 129 (1989), 363-382. MR 986796 (90e:11125)
  • [Fo] E. Fouvry, Sur le problème des diviseurs de Titchmarch, J. Riene Angew. Math. 357 (1985), 51-76. MR 783533 (87b:11090)
  • [Ga] P. X. Gallagher, A large sieve density estimate near $ \sigma = 1$, Invent. Math. 11 (1970), 329-339. MR 0279049 (43:4775)
  • [HaT] R. R. Hall and G. Tenenbaum, Divisors, Cambridge Tracts in Math., vol. 90, 1988. MR 964687 (90a:11107)
  • [HM] A. Hildebrand and H. Maier, Irregularities in the distribution of primes in short intervals, J. Reine Angew. Math. 397 (1989), 162-193. MR 993220 (90f:11077)
  • [HT] A. Hildebrand and G. Tenenbaum, On integers free of large prime factors, Trans. Amer. Math. Soc. 296 (1986), 265-290. MR 837811 (87f:11066)
  • [Hu] M. Huxley, On the difference between consecutive primes, Invent. Math. 15 (1972), 164-170. MR 0292774 (45:1856)
  • [Iv] A. Ivic, The Riemann zeta-function, Wiley, New York, 1985. MR 792089 (87d:11062)
  • [Iw] H. Iwaniec, Rosser's sieve--bilinear forms of the remainder terms--some applications, Recent Progr. in Analytic Number Theory, Vol. I (H. Halberstam and C. Hooley, eds.), Academic Press, London, 1982, pp. 203-230. MR 637348 (83b:10056)
  • [Ma] H. Maier, Primes in short intervals, Michigan Math. J. 32 (1985), 221-225. MR 783576 (86i:11049)
  • [Mo] H. L. Montgomery, Problems concerning prime numbers, Proc. Sympos. Pure Math., vol. 28, Amer. Math. Soc., Providence, RI, 1976, pp. 307-310. MR 0427249 (55:284)
  • [Ni] J. L. Nicolas, Répartition des nombres largements composés, Acta Arith. 34 (1979), 379-390. MR 543209 (80j:10006b)
  • [Se] A. Selberg, On the normal density of primes in small intervals and the difference between consecutive primes, Arch. Math. Naturvid. 47 (1943), 87-105. MR 0012624 (7:48e)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 11N13, 11N25

Retrieve articles in all journals with MSC: 11N13, 11N25

Additional Information

Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society