Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials


Authors: Vittorio Coti Zelati and Paul H. Rabinowitz
Journal: J. Amer. Math. Soc. 4 (1991), 693-727
MSC: Primary 58E05; Secondary 34C37, 58F05, 58F15, 70H05
DOI: https://doi.org/10.1090/S0894-0347-1991-1119200-3
MathSciNet review: 1119200
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 33-38. MR 1051605 (91c:58118)
  • [2] V. Coti Zelati, I. Ekeland, and E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann. 288 (1990), 133-160. MR 1070929 (91g:58065)
  • [3] E. Séré, Une approche variationnelle au problème des orbites homoclines de systèmes hamiltonian, Math. Z., to appear.
  • [4] H. Hofer and K. Wysocki, First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, preprint. MR 1079873 (91m:58064)
  • [5] K. Tanaka, Homoclinic orbits in a first order superquadratic Hamiltonian system: Convergence of subharmonic orbits, Analyse nonlinéaire, to appear. MR 1137618 (93e:58072)
  • [6] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math., no. 65, Conf. Board Math. Sci., Washington, D.C., 1986. MR 845785 (87j:58024)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 58E05, 34C37, 58F05, 58F15, 70H05

Retrieve articles in all journals with MSC: 58E05, 34C37, 58F05, 58F15, 70H05


Additional Information

DOI: https://doi.org/10.1090/S0894-0347-1991-1119200-3
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society