Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

Flots d'Anosov à distributions stable et instable différentiables


Authors: Yves Benoist, Patrick Foulon and François Labourie
Journal: J. Amer. Math. Soc. 5 (1992), 33-74
MSC: Primary 58F17; Secondary 58F15
DOI: https://doi.org/10.1090/S0894-0347-1992-1124979-1
MathSciNet review: 1124979
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe which Anosov flows on compact manifolds have $ {C^\infty }$ stable and unstable distributions and a contact canonical $ 1$-form: up to finite coverings and up to a $ {C^\infty }$ change of parameters, each of them is isomorphic to the geodesic flow on (the unit tangent bundle of) a compact locally symmetric space of strictly negative curvature.


References [Enhancements On Off] (What's this?)

  • [A] D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967), 209 (Russian). MR 0224110
  • [BFL] Yves Benoist, Patrick Foulon, and François Labourie, Flots d’Anosov à distributions stable et instable différentiables, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 6, 351–354 (French, with English summary). MR 1071642, https://doi.org/10.2307/2152750
  • [Bo1] N. Bourbaki, Groupes et algèbres de Lie, ch. 4, 5, 6, Masson, Paris, 1984.
  • [Bo2] -, Groupes et algèbres de Lie, ch. 7 et 8, Hermann, Paris, 1975.
  • [EO] P. Eberlein and B. O’Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45–109. MR 0336648
  • [F] Renato Feres, Geodesic flows on manifolds of negative curvature with smooth horospheric foliations, Ergodic Theory Dynam. Systems 11 (1991), no. 4, 653–686. MR 1145615, https://doi.org/10.1017/S0143385700006416
  • [FK1] Renato Feres and Anatole Katok, Invariant tensor fields of dynamical systems with pinched Lyapunov exponents and rigidity of geodesic flows, Ergodic Theory Dynam. Systems 9 (1989), no. 3, 427–432. MR 1016661, https://doi.org/10.1017/S0143385700005071
  • [FK2] Renato Feres and Anatole Katok, Anosov flows with smooth foliations and rigidity of geodesic flows on three-dimensional manifolds of negative curvature, Ergodic Theory Dynam. Systems 10 (1990), no. 4, 657–670. MR 1091420, https://doi.org/10.1017/S0143385700005836
  • [FL] Patrick Foulon and François Labourie, Flots d’Anosov à distributions de Liapounov différentiables, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 5, 255–260 (French, with English summary). MR 1010730
  • [Gh] Étienne Ghys, Flots d’Anosov dont les feuilletages stables sont différentiables, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 2, 251–270 (French). MR 911758
  • [GHV] Werner Greub, Stephen Halperin, and Ray Vanstone, Connections, curvature, and cohomology, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. Volume III: Cohomology of principal bundles and homogeneous spaces; Pure and Applied Mathematics, Vol. 47-III. MR 0400275
  • [Gr] Michael Gromov, Rigid transformations groups, Géométrie différentielle (Paris, 1986) Travaux en Cours, vol. 33, Hermann, Paris, 1988, pp. 65–139. MR 955852
  • [HP] Morris W. Hirsch and Charles C. Pugh, Stable manifolds and hyperbolic sets, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 133–163. MR 0271991
  • [HK] S. Hurder and A. Katok, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 5–61 (1991). MR 1087392
  • [He] Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
  • [Ka] Masahiko Kanai, Geodesic flows of negatively curved manifolds with smooth stable and unstable foliations, Ergodic Theory Dynam. Systems 8 (1988), no. 2, 215–239. MR 951270, https://doi.org/10.1017/S0143385700004430
  • [KN] Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. MR 0152974
  • [LT] F. Lastaria and F. Tricerri, Some remarks about the curvature of locally homogeneous spaces, preprint.
  • [Mo] G. D. Mostow, Intersections of discrete subgroups with Cartan subgroups, J. Indian Math. Soc. 34 (1970), no. 3-4, 203–214 (1971). MR 0492074
  • [Ra] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68. MR 0507234
    M. Ragunatan, \cyr Diskretnye podgruppy grupp Li., Izdat. “Mir”, Moscow, 1977 (Russian). Translated from the English by O. V. Švarcman; Edited by È. B. Vinberg; With a supplement “Arithmeticity of irreducible lattices in semisimple groups of rank greater than 1” by G. A. Margulis. MR 0507236
  • [Sa] Ichirô Satake, Algebraic structures of symmetric domains, Kanô Memorial Lectures, vol. 4, Iwanami Shoten, Tokyo; Princeton University Press, Princeton, N.J., 1980. MR 591460
  • [T] W. Thurston, The geometry and Topology of $ 3$-manifolds, Princeton Lecture Notes (1978).
  • [Wa] G. Warner, Harmonic analysis on semisimple Lie groups, vol. 1, Springer, Berlin, Heidelberg and New York, 1972.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 58F17, 58F15

Retrieve articles in all journals with MSC: 58F17, 58F15


Additional Information

DOI: https://doi.org/10.1090/S0894-0347-1992-1124979-1
Article copyright: © Copyright 1992 American Mathematical Society