Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Invariant differential operators on a reductive Lie algebra and Weyl group representations


Author: Nolan R. Wallach
Journal: J. Amer. Math. Soc. 6 (1993), 779-816
MSC: Primary 17B40; Secondary 17B35, 20C15, 22E47
DOI: https://doi.org/10.1090/S0894-0347-1993-1212243-2
MathSciNet review: 1212243
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [BV1] D. Barbasch and D. Vogan, The local structure of characters, J. Funct. Anal. 37 (1980), 27-55. MR 576644 (82e:22024)
  • [BV2] -, Primitive ideals and orbital integrals in complex classical groups, Math. Ann. 259 (1982), 153-199. MR 656661 (83m:22026)
  • [BV3] -, Primitive ideals and orbital integrals in complex exceptional groups, J. Algebra 80 (1983), 350-382. MR 691809 (84h:22038)
  • [B] J. N. Bernstein, The analytic continuation of generalized functions with respect to a parameter, Funct. Anal. Appl. 6 (1972), 26-40. MR 0320735 (47:9269)
  • [Bo] N. Bourbaki, Groupes et Algèbras de Lie, Chapitres IV, V, et VI, Hermann, Paris, 1968. MR 0240238 (39:1590)
  • [Eh] F. Ehlers, The Weyl algebra, Algebraic $ D$-modules, Chapter V, Perspect. Math., vol. 2, Academic Press, Boston, MA, 1987. MR 882000 (89g:32014)
  • [H1] Harish-Chandra, Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1957), 87-120. MR 0084104 (18:809d)
  • [H2] -, Invariant eigendistributions on a semisimple Lie algebra, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 5-54. MR 0180630 (31:4862c)
  • [H3] -, Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. Math. 86 (1964), 534-564. MR 0180628 (31:4862a)
  • [Ho] L. Hörmander, The analysis of linear partial differential operators. I, Springer-Verlag, Berlin, 1990.
  • [HK] R. Hotta and M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra, Invent. Math. 75 (1984), 327-358. MR 732550 (87i:22041)
  • [K] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404. MR 0158024 (28:1252)
  • [RR] R. Ranga Rao, Orbital integrals in reductive groups, Ann. of Math. (2) 96 (1972), 505-510. MR 0320232 (47:8771)
  • [S] T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 209-224. MR 0442103 (56:491)
  • [Var] V. S. Varadarajan, Harmonic analysis on real reductive groups, Lecture Notes in Math., vol. 576, Springer-Verlag, Berlin, 1977. MR 0473111 (57:12789)
  • [RRGI] N. R. Wallach, Real reductive groups. I, Academic Press, Boston, MA, 1988. MR 929683 (89i:22029)
  • [W] H. Weyl, The classical groups, their invariants and representations, 2nd. ed., Princeton University Press, Princeton, NJ, 1949. MR 1488158 (98k:01049)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 17B40, 17B35, 20C15, 22E47

Retrieve articles in all journals with MSC: 17B40, 17B35, 20C15, 22E47


Additional Information

DOI: https://doi.org/10.1090/S0894-0347-1993-1212243-2
Keywords: Research partially supported by an NSF summer grant
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society