Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

A kinetic formulation of multidimensional scalar conservation laws and related equations


Authors: P.-L. Lions, B. Perthame and E. Tadmor
Journal: J. Amer. Math. Soc. 7 (1994), 169-191
MSC: Primary 35L65; Secondary 35K65
DOI: https://doi.org/10.1090/S0894-0347-1994-1201239-3
MathSciNet review: 1201239
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a new formulation of multidimensional scalar conservation laws, which includes both the equation and the entropy criterion. This formulation is a kinetic one involving an additional variable called velocity by analogy. We also give some applications of this formulation to new compactness and regularity results for entropy solutions based upon the velocity-averaging lemmas. Finally, we show that this kinetic formulation is in fact valid and meaningful for more general classes of equations like equations involving nonlinear second-order terms.


References [Enhancements On Off] (What's this?)

  • [1] C. Bardos, F. Golse, and D. Levermore, Fluid dynamic limits of kinetic equations. II:, Convergence proofs for the Boltzmann equation. (preprint) MR 1087069
  • [2] C. Bardos, F. Golse, B. Perthame, and R. Sentis, The non-accretive radiative transfer equations: existence of solutions and Rosseland approximation, J. Funct. Anal. 77 (1988), 434-460. MR 933978 (89f:35174)
  • [3] Ph. Bènilan and M. G. Crandall, Regularizing effects of homogeneous evolution equations, Contributions to Analysis and Geometry, John Hopkins Univ. Press, Baltimore, MD, 1981, pp. 23-39. MR 648452 (83g:47063)
  • [4] -, The continuous dependence on $ \varphi $ of solutions of $ {u_t} - \Delta \varphi (u) = 0$, Indiana Univ. Math. J. 30 (1981), 162-177. MR 604277 (83d:35071)
  • [5] Y. Brenier, Résolution d'équations d'évolution quasilinéaires en dimension $ N$ d'espace à l'aide d'équations linéaires en dimension $ N + 1$, J. Differential Equations 50 (1983), 375-390. MR 723577 (85f:35117)
  • [6] H. Brézis and M. G. Crandall, Uniqueness of solution of the initial-value problem for $ {u_t} - \Delta \varphi (u) = 0$, J. Math. Pures Appl. (9) 58 (1979), 153-163. MR 539218 (80e:35029)
  • [7] C. Cercignani, The Boltzmann equation and its applications, Springer-Verlag, New York, Berlin and Heidelberg, 1988. MR 1313028 (95i:82082)
  • [8] P. Constantin and J. C. Saut, Local smoothing properties of Schrödinger equations, Indiana Univ. Math. J. 38 (1989), 791-810. MR 1017334 (91e:35167)
  • [9] C. Dafermos, Regularity and large time behaviour of solutions of a conservation law without convexity, Proc. Roy. Soc. Edinburgh Sect. A 99 (1985), 201-239. MR 785530 (86j:35107)
  • [10] F. Demangel and D. Serre, Non-vanishing singular parts of hyperbolic equations, prépublications 90-18, Univ. Paris-Sud and C. R. Acad. Sci. Paris Série I 309 (1989), no. 19, 975-978.
  • [11] R. J. DiPerna, Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal. 88 (1985), 223-270. MR 775191 (86g:35121)
  • [12] R. J. DiPerna and P. L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math. 42 (1989), 729-757. MR 1003433 (90i:35236)
  • [14] B. Engquist, Personal communication.
  • [15] P. Gérard, Moyenne de solutions d'équations aux dérivées partielles, Séminaire EDP 1986-1987, École Polytechnique, Palaiseau, 1988.
  • [16] P. Gérard, Moyennisation et régularité deux-microlocale, Ann. Sci. Ecole Norm. Sup. (4) 23 (1990), no. 7, 89-121. MR 1042388 (91g:35068)
  • [17] Y. Giga and T. Miyakawa, A kinetic construction of global solutions of first-order quasilinear equations, Duke Math. J. 50 (1983), 505-515. MR 705037 (85g:35017)
  • [18] F. Golse, P. L. Lions, B. Perthame, and R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal. 76 (1988), 110-125. MR 923047 (89a:35179)
  • [19] F. Golse, B. Perthame, and R. Sentis, Un résultat de compacité pour les équations du transport, C. R. Acad. Sci. Paris, Sér. I Math. 301 (1985), 341-344. MR 808622 (86m:82062)
  • [20] F. Golse and F. Poupaud, Limite fluide de l'équation de Boltzmann des semi-conducteurs pour une statistique de Fermi-Dirac. (to appear in Comm. Pure Appl. Math.) MR 1193108 (93m:82038)
  • [21] S. N. Kružkov, First-order quasilinear equations in several independent variables, Math. USSR-Sb. 10 (1970), 217-243.
  • [22] P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957), 537-566. MR 0093653 (20:176)
  • [23] P. L. Lions, Regularizing effects for first-order Hamilton-Jacobi equations, Appl. Anal. 20 (1985), 283-308. MR 814955 (87h:35054)
  • [24] T. P. Liu and M. Pierre, Source-solutions and asymptotic behavior in conservation laws, J. Differential Equations 51 (1984), 419-441. MR 735207 (85i:35094)
  • [25] F. Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), 489-507. MR 506997 (80h:46043a)
  • [26] O. Oleinik, The Cauchy problem for nonlinear equations in a class of discontinuous functions, Dokl. Akad. Nauk SSSR 95 (1954), 451-454; English transl. Amer. Math. Soc. Transl. Ser. 2, vol. 42, Amer. Math. Soc., Providence, RI, 1964, pp. 7-12.
  • [27] B. Perthame, Global existence of solutions to the BGK model of Boltzmann equations, J. Differential Equations 81 (1989), 191-205. MR 1023307 (91a:35158)
  • [28] -, Higher moments for kinetic equations; Applications to Vlasov-Poisson and Fokker-Planck equations, Math. Methods Appl. Sci. 13 (1990), 441-452. MR 1078593 (91j:82044)
  • [29] B. Perthame and E. Tadmor, A kinetic equation with kinetic entropy functions for scalar conservation laws, Comm. Math. Phys. 136 (1991), 501-517. MR 1099693 (92d:82095)
  • [30] P. Sjölin, Regularity of solutions to Schrödinger equations, Duke Math. J. 55 (1987), 699-715.
  • [31] J. Smoller, Shock waves and reaction-diffusion equations, Springer, Berlin, 1982. MR 1301779 (95g:35002)
  • [32] L. Tartar, Une nouvelle méthode de résolution d'équations aux dérivées partielles nonlinéaires, Lecture Notes in Math., vol. 665, Springer, Berlin, 1977, pp. 228-241. MR 519433 (80b:35007)
  • [33] -, Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics, Heriot-Watt Sympos., Vol. 4 (R. J. Knopps, ed.), Research Notes in Math., Vol. 39, Pitman, Boston and London, 1975, pp. 136-211. MR 584398 (81m:35014)
  • [34] L. Vega, Schrödinger equations: Pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), 874-878. MR 934859 (89d:35046)
  • [35] A. I. Volpert and S. I. Hudjaev, Analysis in classes of discontinuous functions, and the equations of mathematical physics, Izdat. ``Nauka'', Moscow, 1975, p 394. (Russian) MR 0427873 (55:903)
  • [36] K. Zumbrun, Asymptotic behavior for systems of nonconvex conservation laws, Ph.D. Thesis, Courant Institute, New York University.
  • [37] P. L. Lions, B. Perthame, and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and $ p$-systems. (preprint) MR 1284790 (95c:76093)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 35L65, 35K65

Retrieve articles in all journals with MSC: 35L65, 35K65


Additional Information

DOI: https://doi.org/10.1090/S0894-0347-1994-1201239-3
Keywords: Scalar multidimensional conservation laws, entropy solutions, kinetic formulation, pseudo-maxwellian, velocity averaging, compactness, oscillations, genuine nonlinearity, regularity results, degenerate nonlinear parabolic equations
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society