HOMOTOPY HYPERBOLIC 3-MANIFOLDS
ARE VIRTUALLY HYPERBOLIC

DAVID GABAI

The main result of this paper is the only if part of

Theorem 0.1. A closed irreducible 3-manifold \(N \) is homotopy equivalent to a
hyperbolic 3-manifold if and only if \(N \) is finitely covered by a hyperbolic 3-
manifold.

Remark 0.2. The if direction is a well known, quick consequence of Mostow's
Rigidity theorem. Here is the sketch. Let \(p: M \rightarrow N \) be a finite regular covering
map. Any covering translation of \(H^3 \) corresponding to an element of \(\pi_1(N) \)
is a lift of a covering transformation \(f \) of \(p \), which by Mostow rigidity is
homotopic to a unique isometry of \(M \). It follows that \(\pi_1(N) \cong \Gamma \subset \text{Isom}(H^3) \)
and \(H^3/\Gamma \) is a hyperbolic 3-manifold \(M' \). Since \(M' \) and \(N \) are \(K(\pi,1) \)'s,
they are homotopy equivalent.

The proof of the only if direction is likewise a quick application of well-
known results. Here is the sketch. If \(N \) is homotopy equivalent to \(M \), then
using the residual finiteness of \(\pi_1(M) \) we can pass to a regular covering space
\(M_1 \) of \(M \) which has a closed geodesic \(\gamma \) with an enormously thick embedded
regular neighborhood \(U \). Now lift the homotopy equivalence to \(f_1: M_1 \rightarrow N_1 \)
where \(N_1 \) is the corresponding covering of \(N \). Using the fact that the thurston
norm equals the singular norm [to replace a singular torus by an embedded one
in the same homology class in \(f_1(U) - f_1(N(\gamma)) \)] and the observation that the
homotopy equivalence keeps far away points of \(M_1 \) far away, it follows that
in \(f_1(U) \) we can find a curve with a thick collar \(W \). The homotopy inverse
\(g_1 \) is homotopic to a map which is a homeomorphism on \(W \) and on \(N - W \)
restricts to a \(\pi_1 \)-injective degree-1 map. By Waldhausen \(g_1 \) is homotopic to a
homeomorphism.

More details are provided in §1. Theorem 0.1 is used in §2 to reduce the
general problem of homotopy equivalence implying homeomorphism for hy-
perbolic 3-manifolds to Conjecture 2.1. Other results related to the proof of
Theorem 0.1 are stated in §2.

1. PROOF OF THEOREM 1.1

Notation 1.1. If \(f: M \rightarrow N \) is a homotopy equivalence, let \(g: N \rightarrow M \) be the
homotopy inverse and \(F: M \times I \rightarrow M \) be the homotopy of \(g \circ f \) to \(\text{id}_M \). Let
$C > 2 \text{ Sup}\{\text{diam} \tilde{F}(m \times I) \mid m \in M\}$, where \tilde{F} is a lift of F to the universal covering of M. $l(\gamma)$ denotes length, and $B(n, x) = \{z \in Z \mid d(x, z) \leq n\}$ where the space Z is clear from context. $N(X)$ denotes (thin) regular neighborhood, and $|E|$ denotes number of components of E.

Lemma 1.2. If $f : M \to N$ is a homotopy equivalence, then $d(x, y) \geq C$ implies that $f(x) \cap f(y) = \emptyset$. □

Lemma 1.3. If M is a closed hyperbolic manifold, $n > 0$, then there exists a regular finite sheeted covering M_1 of M with injectivity radius $\geq n$.

Proof. Let $p : (H^3, z) \to (M, x)$ the universal covering map. Let $d = \text{diam}(M)$, and assume that $n > d$. Let $V = \{t \in p^{-1}(x) \mid d(z, t) < 4n\}$. Since $\pi_1(M)$ is residually finite [Ma], there exist regular coverings $q : (H^3, z) \to (M_1, y)$, $\pi : (M_1, y) \to (M, x)$ such that $p = \pi \circ q$ and $V \cap q^{-1}(y) = z$. To see this let $\{a_1, \ldots, a_k\} = \{a \in \pi_1(M, x) \mid$ which lift to paths with the first end point z and the other in $V - z\}$. M_1 is a covering corresponding to a finite index normal subgroup which does not contain $\{a_1, \ldots, a_k\}$. $q | B(2n, z)$ is an embedding, else there exists $w \in B(4n, z)$ such that $q(w) = q(z)$. Since M_1 is regular, $q | B(2n, z')$ is an embedding for each $z' \in p^{-1}(x)$. Finally for all $s \in H^3$, there exists $z' \in p^{-1}(x)$ such that $B(n, s) \subset B(2n, z')$. Thus $q | B(n, s)$ is an embedding. □

If γ is a closed geodesic in a hyperbolic 3-manifold, then the *tube radius* of $\gamma = \text{Sup}\{\text{radii of embedded hyperbolic tubes about } \gamma\} = \frac{1}{2} \min\{d(\gamma, \delta) \mid \delta$ is a distinct covering translate of γ in $H^3\}$.

Lemma 1.4. If M_1 is a closed hyperbolic manifold with injectivity radius n, then there exists a geodesic γ in M_1 with tube radius $> n/2$.

Proof. Let γ be a shortest geodesic in M_1. Let γ_1, γ_2 be distinct lifts of γ in H^3. If $d(\gamma_1, \gamma_2) \leq n = 1/2l(\gamma)$, then there exist $x_i \in \gamma_i$ which are covering translates of each other such that $d(x_1, x_2) < l(\gamma)$, which implies the existence of a geodesic shorter than γ. □

Lemma 1.5. If M is a closed oriented hyperbolic 3-manifold and $f : M \to N$ is a homotopy equivalence such that N is irreducible and M has a geodesic γ with tube radius $> 4C$, then f is homotopic to a homeomorphism.

Proof. For $0 < i \leq 4$ let S_i be the torus in M at distance iC from γ, let V_i be the solid torus in M bounded by S_i, and let $K = f(S_2)$ and $J = N(K) \cup (\text{components of } N - K \text{ disjoint from } f(S_1 \cup S_3))$. Let V_0 also denote γ.

Claim 1. (0) $f^{-1}(J) \subset V_3 ^c - V_1 ^c$ and $g(J) \subset V_4 ^c - V_0 ^c$.

(i) $|\partial J| = 2$, one component of which bounds a region disjoint from J containing $f(S_1)$ and the other component bounds a region disjoint from J containing $f(S_3)$.

(ii) J is irreducible.

(iii) $[K]$ generates $H_2(J) = Z$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof of Claim 1. (0) \(K \cap (f(V_1) \cup f(M - V_3)) = \emptyset\) by Lemma 1.2. If \(R\) is a component of \(\partial N(K)\), then \(g(R) \subset V_3\) and, hence, is homologically trivial, so \(R\) bounds in \(N\) since \(f\) is a homotopy equivalence. Each of \(f(M - V_3)\), \(f(V_1)\) lies in a unique component of \(N - K\) and, hence, in a unique component of \(N - J\), so \(f^{-1}(J) \subset \hat{V}_3 - V_1\), \(g(J) \subset \hat{V}_4 - V_0\) now follow from Lemma 1.2.

(i) If \(x \in f(\gamma)\), \(y \in f(M - V_4)\), and \(\alpha \subset N - K\) is a path from \(x\) to \(y\), then \(\deg f = 1\) and choice of \(C\) implies that (after possibly a tiny homotopy of \(f\)) some component \(\beta\) of \(f^{-1}(\alpha)\) is a path from some element of \(f^{-1}(x) \subset V_1\) to some element of \(f^{-1}(y) \subset M - V_3\) disjoint from \(S_2\).

(ii) If there exists an essential 2-sphere \(P\) in \(J\), the irreducibility of \(N\) would imply \(P\) bounded a ball containing \(f(V_1)\) or \(f(M - V_3)\). This would contradict the \(\pi_1\)-injectivity of \(f\).

(iii) \(g \circ f\)|\(S_2\) is homotopic to id in \(V_3 - V_1 \subset V_4 - V_0\), and \([S_2]\) generates \(H_2(V_4 - V_0)\); therefore, \([f(S_2)] = [K]\) is primitive in \(H_2(J)\). Since each closed curve in \(J\) can be homotoped out of \(J\), \(J\) contains no nonseparating surface, so by (i) \(H_2(J) = Z\).

Claim 2. \(J\) contains a homologically nontrivial torus \(T\) which bounds in \(N\) a solid torus \(W\) containing \(f(\gamma)\). Finally \(g : T \to M - V_0\) and \(in : T \to N - \hat{W}\) are \(\pi_1\)-injective.

Proof of Claim 2. Since the thurston norm on \(H_2(J)\) equals the singular norm on \(H_2(J)\) [G Corollary 6.18] and (iii) there exists an embedded nonbounding torus \(T\) in \(J\) such that \([T]\) = \([K]\) \in \(H_2(J)\). Since \(g\)|\(T\) is not \(\pi_1\)-injective as a map into \(V_4\), it follows that \(T\) is compressible in \(N\). A compressible torus in an irreducible 3-manifold bounds either a solid torus or lives in a ball. \(\pi_1\)-injectivity of \(f\) precludes the latter, and \(Z \neq \pi_1(M - V_3)\) implies that the solid torus \(W\) contains \(f(\gamma)\). The \(\pi_1\)-injectivity of \(g\)|\(T\) follows from the facts that \(g\)|\(T\) is \(\pi_1\)-injective as a map into \(V_4 - V_0\) (since each singular sphere in \(V_4 - V_0\) is homologically trivial and \([g(T)] = [S_2]\)) and \(S_4\) is incompressible in \(M - \hat{V}_4\). Finally if \(T\) is compressed in \(N - \hat{W}\), then an application of the loop theorem would imply that either some power of \(f(\gamma)\) is homotopically trivial in \(N\) or \(N = S^2 \times S^1\).

Claim 3. Let \(Q = N - \hat{W}\). \(g\) is homotopic to a map \(h : N \to M\) such that \(h\)|\(T\) is a homeomorphism onto \(S_2\), \(h\)|\(W\) is degree-1 onto \(V_2\), \(h\)|\(Q\) is degree-1 onto \(M - V_2\), and \(h\)|\(W\) is \(\pi_1\)-injective into \(V_2\).

Proof of Claim 3. By Claim 1 the map on \(T\) obtained by first applying \(g\) and then projecting to \(S_2\) (in \(V_4 - V_0\)) is a degree-1 map, so by \([K]\) or \([BE]\) it is homotopic to a homeomorphism. Therefore, to obtain \(h\), first homotop \(g\) to \(g'\) via a homotopy supported in a tiny neighborhood of \(T\) so that \(g'|T\) is a homeomorphism, \(g'(W) \subset V_4\), and \(g'(Q) \subset M - V_0\). Applying the natural retractions of \(V_4\) to \(V_2\) and \(M - V_0\) to \(M - \hat{V}_2\), to stuff the guts spilling out, we obtain \(h\). The degree-1 conclusions follow from the fact that \(g\) is degree-1. \(h\)|\(W\) is obviously \(\pi_1\)-injective.
Claim 4. \(Q \) is irreducible and \(\pi_1 \)-injects into \(f(M - \hat{V}_1) \).

Proof of Claim 4. The irreducibility of \(Q \) follows from the irreducibility of \(N \) and the fact that \(f(\gamma) \) is homotopically nontrivial. If \(D \) is a singular disc in \(f(M - \hat{V}_1) \) such that \(\partial D \subset T \), then \(g(D) \subset M - V_0 \) and \(g \mid T : T \to M - V_0 \) is \(\pi_1 \)-injective implies that \(\partial D \) is homotopically trivial in \(T \). Therefore, \(T \pi_1 \)-injects into \(f(M - \hat{V}_1) \) and, since \(T \) is incompressible in \(Q \), Claim 4 follows.

Claim 5. \(h \mid Q \) is \(\pi_1 \)-injective into \(M - V_2 \).

Proof of Claim 5. Let \(\delta \) be a closed curve in \(Q \). Let \(\alpha \) (resp. \(\beta \)) be the curve \(h(\delta) \) (resp. \(g(\delta) \)). By construction \(\alpha \subset M - V_2 \) and \(\beta \subset M - V_0 \). Furthermore \(\alpha \) is homotopic to \(\beta \) in \(M - V_0 \). \(\deg f = 1 \) implies that \(f^{-1}(\delta) \) contains a curve \(\epsilon \in M - V_1 \) such that \(f \mid \epsilon \) maps with nonzero degree to \(\delta \). \(\epsilon \) is homotopic to a nonzero multiple of \(\beta \) and, hence, a nonzero multiple of \(\alpha \) in \(M - V_0 \). Therefore, if \(h(\delta) \) is homotopically trivial in \(M - V_2 \), then \(\epsilon \) is homotopically trivial in \(M - V_1 \), so \(\delta \) is homotopically trivial in \(f(M - V_1) \) \(\{ \pi_1(f(M - \hat{V}_1)) \) being torsion free\} and so \(\delta \) is homotopically trivial in \(Q \) by Claim 4.

Claim 6. \(h \) is homotopic to a homeomorphism.

Proof of Claim 6. By Waldhausen [He] \(h : (Q, \partial Q) \to (M - \hat{V}_2, \partial V_2) \) (resp. \(h : (W, \partial W) \to (V_2, \partial V_2) \)) is homotopic to a homeomorphism via a homotopy fixed on the boundary.

Remarks. If \(\gamma \) has a larger tube radius, e.g. 12\(C \), then Claims 4-5 can be replaced by the observation that the homotopy equivalence splits along \(S_6 \) and \(T_6 \) to ones on \(V_6 \) and \(W \) and \(M - \hat{N}(V_6) \) and \(Q \). Hint: there is an embedded torus \(T_i \) near \(f(S_i) \) for \(i=2, 6, 10 \) which bounds a solid torus; furthermore, \(T_2, T_{10} \) bound a product homeomorphic to Torus \(\times I \). In this setting we now have enough room to homotope \(f \) so that \(f(S_6) = T_6 \). I thank Mike Freedman for suggesting this simplification.

Proof of Theorem 1.1. By Lemmas 1.3, 1.4, \(M \) has a finite covering space \(M_1 \) with a geodesic of tube radius \(> 4C \). Let \(N_1 \) be the associated covering space of \(N \). By [MSY] or [D] \(N_1 \) is irreducible. Now apply Lemma 1.5.

2. RELATED RESULTS AND A CONJECTURE

Conjecture 2.1. Let \(G \) and \(H \) be isomorphic finitely generated groups such that \(G \subset \text{PSL}(2, C) \subset \text{Homeo}(B^3) \) and \(H \subset \text{Homeo}(B^3) \). Suppose further:

(a) \(G \) and \(H \) act freely on \(\hat{B}^3 \) with closed 3-manifold quotients;
(b) \(H \mid S^2 = G \mid S^2 \); and
(c) there exist subgroups \(H' \), \(G' \) of finite index in \(H \) and \(G \) such that \(H' \mid B^3 = G' \mid B^3 \).
Then H is conjugate to G in $\text{Homeo} B^3$.

Remark 2.2. Mostow rigidity and Conjecture 2.1 imply the conjecture "If $f: M \to N$ is a homotopy equivalence where M is hyperbolic and N is irreducible, then f is homotopic to a homeomorphism." For if N is an irreducible homotopy hyperbolic 3-manifold, then by Theorem 0.1 it has a regular finite sheeted covering space N_I which is a hyperbolic 3-manifold. The well-known argument of Remark 0.2 shows that there exists a hyperbolic 3-manifold M' homotopy equivalent to N such that M is finitely covered by N_I and if G (resp. H) is the group of covering transformations of H^3 corresponding to M' (resp. N), and extended to act on B^3, then G and H satisfy (a), (b), and (c), where H' and G' are the groups associated to N_I. The conclusion of Conjecture 2.1 implies that N is homeomorphic to M', and another application of Mostow rigidity shows that $M = M'$ and that the homotopy equivalence f is homotopic to a homeomorphism.

Theorem 2.3. Let $f: M \to N$ be a homotopy equivalence between closed irreducible 3-manifolds with residually finite fundamental group. Suppose further that there exists an element $\gamma \in \pi_1(M)$ which generates a maximal abelian subgroup $\langle \gamma \rangle$ whose associated covering space $M_\gamma = D^2 \times S^1$; then M and N have homeomorphic finite sheeted coverings.

Proof. Fix any Riemannian metric on M. Let V_i, $i = 0, 1, \ldots, 4$, be parallel solid tori in M_γ containing γ as a core with $\partial V_i = S_i$ at least C distance apart. It is well known (to algebraists, see [L]) that maximal abelian subgroups are separable (so given $a_1, \ldots, a_n \in \pi_1(M) - \langle \gamma \rangle$ there exists a subgroup of finite index containing $\langle \gamma \rangle$ but missing a_1, \ldots, a_n). An argument related to the one of Lemma 1.3 shows that there exists a finite covering M_1 of M such that M_1 is covered by M_γ and the projection of V_i to M_1 is an embedding. We abuse notation by continuing to call the image in M_1 of V_i by the same name. Let N_1 be the associated finite covering of N. Again by [MSY] or [D] N_1 is irreducible. The argument of Lemma 1.5 now shows that M_1 and N_1 are homeomorphic.

Combining Waldhausen [W] with the idea of the proof of Lemma 1.5 we obtain.

Theorem 2.4. If $f: M \to M$ is a homeomorphism homotopic to the identity and M is a hyperbolic 3-manifold, then there exists a finite covering space of M such that a lift of f is isotopic to the identity.

Remark 2.5. Actually M need only satisfy the hypothesis of Theorem 2.3.

References

Department of Mathematics, California Institute of Technology, Pasadena, California 91125-0001

E-mail address: Gabai@juliet.caltech.edu