HOMOTOPY HYPERBOLIC 3-MANIFOLDS ARE VIRTUALLY HYPERBOLIC

DAVID GABAI

The main result of this paper is the only if part of

Theorem 0.1. A closed irreducible 3-manifold N is homotopy equivalent to a hyperbolic 3-manifold if and only if N is finitely covered by a hyperbolic 3-manifold.

Remark 0.2. The if direction is a well known, quick consequence of Mostow's Rigidity theorem. Here is the sketch. Let $p:M \rightarrow N$ be a finite regular covering map. Any covering translation of H^3 corresponding to an element of $\pi_1(N)$ is a lift of a covering transformation f of p, which by Mostow rigidity is homotopic to a unique isometry of M. It follows that $\pi_1(N) \cong \Gamma \subset \text{Isom}(H^3)$ and H^3/Γ is a hyperbolic 3-manifold M'. Since M' and N are $K(\pi, 1)$'s, they are homotopy equivalent.

The proof of the only if direction is likewise a quick application of well-known results. Here is the sketch. If N is homotopy equivalent to M, then using the residual finiteness of $\pi_1(M)$ we can pass to a regular covering space M_1 of M which has a closed geodesic γ with an enormously thick embedded regular neighborhood U. Now lift the homotopy equivalence to $f_1:M_1 \rightarrow N_1$ where N_1 is the corresponding covering of N. Using the fact that the thurston norm equals the singular norm [to replace a singular torus by an embedded one in the same homology class in $f_1(U) - f_1(N(\gamma))$] and the observation that the homotopy equivalence keeps far away points of M_1 far away, it follows that in $f_1(U)$ we can find a curve with a thick collar W. The homotopy inverse g_1 is homotopic to a map which is a homeomorphism on W and on $N-W$ restricts to a π_1-injective degree-1 map. By Waldhausen g_1 is homotopic to a homeomorphism.

More details are provided in §1. Theorem 0.1 is used in §2 to reduce the general problem of homotopy equivalence implying homeomorphism for hyperbolic 3-manifolds to Conjecture 2.1. Other results related to the proof of Theorem 0.1 are stated in §2.

1. PROOF OF THEOREM 1.1

Notation 1.1. If $f:M \rightarrow N$ is a homotopy equivalence, let $g:N \rightarrow M$ be the homotopy inverse and $F:M \times I \rightarrow M$ be the homotopy of $g \circ f$ to id_M. Let

Received by the editors November 18, 1992.
1991 Mathematics Subject Classification. Primary 57M50, 30F40.
Partially supported by NSF Grants DMS-8902343, DMS-9200584.

©1994 American Mathematical Society

193
\[C > 2 \text{Sup}\{\text{diam} \tilde{F}(m \times I) \mid m \in M\}, \] where \(\tilde{F} \) is a lift of \(F \) to the universal covering of \(M \). \(l(\gamma) \) denotes length, and \(B(n, x) = \{z \in Z \mid d(x, z) \leq n\} \) where the space \(Z \) is clear from context. \(N(X) \) denotes (thin) regular neighborhood, and \(|E| \) denotes number of components of \(E \).

Lemma 1.2. If \(f: M \to N \) is a homotopy equivalence, then \(d(x, y) \geq C \) implies that \(f(x) \cap f(y) = \emptyset \). \(\square \)

Lemma 1.3. If \(M \) is a closed hyperbolic manifold, \(n > 0 \), then there exists a regular finite sheeted covering \(M_1 \) of \(M \) with injectivity radius \(\geq n \).

Proof. Let \(p: (H^3, z) \to (M, x) \) the universal covering map. Let \(d = \text{diam}(M) \), and assume that \(n > d \). Let \(V = \{t \in p^{-1}(x) \mid d(z, t) < 4n\} \). Since \(\pi_1(M) \) is residually finite [Ma], there exist regular coverings \(q: (H^3, z) \to (M_1, y) \), \(\pi: (M_1, y) \to (M, x) \) such that \(p = \pi \circ q \) and \(V \cap q^{-1}(y) = z \). To see this let \(\{a_1, \ldots, a_k\} = \{a \in \pi_1(M, x) \mid \text{which lift to paths with the first end point} \ z \) and the other in \(V - z\} \). \(M_1 \) is a covering corresponding to a finite index normal subgroup which does not contain \(\{a_1, \ldots, a_k\} \). \(q|B(2n, z) \) is an embedding, else there exists \(w \in B(4n, z) \) such that \(q(w) = q(z) \). Since \(M_1 \) is regular, \(q|B(2n, z') \) is an embedding for each \(z' \in p^{-1}(x) \). Finally for all \(s \in H^3 \), there exists \(z' \in p^{-1}(x) \) such that \(B(n, s) \subset B(2n, z') \). Thus \(q|B(n, s) \) is an embedding. \(\square \)

If \(\gamma \) is a closed geodesic in a hyperbolic 3-manifold, then the **tube radius** of \(\gamma = \text{Sup}\{\text{radii of embedded hyperbolic tubes about} \ \gamma\} = \frac{1}{2} \min\{d(\gamma, \delta) \mid \delta \) is a distinct covering translate of \(\gamma \) in \(H^3\} \).

Lemma 1.4. If \(M_1 \) is a closed hyperbolic manifold with injectivity radius \(n \), then there exists a geodesic \(\gamma \) in \(M_1 \) with tube radius \(\geq n/2 \).

Proof. Let \(\gamma \) be a shortest geodesic in \(M_1 \). Let \(\gamma_1, \gamma_2 \) be distinct lifts of \(\gamma \) in \(H^3 \). If \(d(\gamma_1, \gamma_2) \leq n = \frac{1}{2} l(\gamma) \), then there exist \(x_1, x_2 \) which are covering translates of each other such that \(d(x_1, x_2) < l(\gamma) \), which implies the existence of a geodesic shorter than \(\gamma \). \(\square \)

Lemma 1.5. If \(M \) is a closed oriented hyperbolic 3-manifold and \(f: M \to N \) is a homotopy equivalence such that \(N \) is irreducible and \(M \) has a geodesic \(\gamma \) with tube radius \(> 4C \), then \(f \) is homotopic to a homeomorphism.

Proof. For \(0 < i \leq 4 \) let \(S_i \) be the torus in \(M \) at distance \(iC \) from \(\gamma \), let \(V_i \) be the solid torus in \(M \) bounded by \(S_i \), and let \(K = f(S_2) \) and \(J = N(K) \cup (\text{components of} \ N - K \text{ disjoint from} \ f(S_1 \cup S_3)) \). Let \(V_0 \) also denote \(\gamma \).

Claim 1. (0) \(f^{-1}(J) \subset V_3 - \overset{\circ}{V_1} \) and \(g(J) \subset \overset{\circ}{V_4} - V_0 \).

(i) \(|\partial J| = 2 \), one component of which bounds a region disjoint from \(J \) containing \(f(S_1) \) and the other component bounds a region disjoint from \(J \) containing \(f(S_3) \).

(ii) \(J \) is irreducible.

(iii) \(|K| \) generates \(H_2(J) = Z \).
Proof of Claim 1. (0) \(K \cap (f(V_1) \cup f(M - \mathbf{\hat{V}}_3)) = \emptyset \) by Lemma 1.2. If \(R \) is a component of \(\partial N(K) \), then \(g(R) \subset V_3 \) and, hence, is homologically trivial, so \(R \) bounds in \(N \) since \(f \) is a homotopy equivalence. Each of \(f(M - V_3) \), \(f(V_1) \) lies in a unique component of \(N - K \) and, hence, in a unique component of \(N - J \), so \(f^{-1}(J) \subset \mathbf{\hat{V}}_3 - V_1 \). \(g(J) \subset \mathbf{\hat{V}}_4 - V_0 \). Now follow from Lemma 1.2.

(i) If \(x \in f(\gamma) \), \(y \in f(M - V_4) \), and \(\alpha \subset N - K \) is a path from \(x \) to \(y \), then \(\deg f = 1 \) and choice of \(C \) implies that (after possibly a tiny homotopy of \(f \)) some component \(\beta \) of \(f^{-1}(\alpha) \) is a path from some element of \(f^{-1}(x) \in V_1 \) to some element of \(f^{-1}(y) \in M - V_3 \) disjoint from \(S_2 \).

(ii) If there exists an essential 2-sphere \(P \) in \(J \), the irreducibility of \(N \) would imply \(P \) bounded a ball containing \(f(V_1) \) or \(f(M - V_3) \). This would contradict the \(\pi_1 \)-injectivity of \(f \).

(iii) \(g \circ f \mid S_2 \) is homotopic to id in \(V_3 - V_1 \subset V_4 - V_0 \), and \([S_2] \) generates \(H_2(V_4 - V_0) \); therefore, \([f(S_2)] = [K] \) is primitive in \(H_2(J) \). Since each closed curve in \(J \) can be homotoped out of \(J \), \(J \) contains no nonseparating surface, so by (i) \(H_2(J) = Z \). \(\square \)

Claim 2. \(J \) contains a homologically nontrivial torus \(T \) which bounds in \(N \) a solid torus \(W \) containing \(f(\gamma) \). Finally \(g : T \to M - V_0 \) and \(\text{id} : T \to N - \mathbf{\hat{W}} \) are \(\pi_1 \)-injective.

Proof of Claim 2. Since the thurston norm on \(H_2(J) \) equals the singular norm on \(H_2(J) \) \([G \text{ Corollary 6.18}] \) and (iii) there exists an embedded nonbounding torus \(T \) in \(J \) such that \([T] = [K] \subset H_2(J) \). Since \(g \mid T \) is not \(\pi_1 \)-injective as a map into \(V_4 \), it follows that \(T \) is compressible in \(N \). A compressible torus in an irreducible 3-manifold bounds either a solid torus or lives in a ball. \(\pi_1 \)-injectivity of \(f \) precludes the latter, and \(Z \neq \pi_1(M - V_3) \) implies that the solid torus \(W \) contains \(f(\gamma) \). The \(\pi_1 \)-injectivity of \(g \mid T \) follows from the facts that \(g \mid T \) is \(\pi_1 \)-injective as a map into \(V_4 - V_0 \) (since each singular sphere in \(V_4 - V_0 \) is homologically trivial and \([g(T)] = [S_2] \) and \(S_4 \) is incompressible in \(M - \mathbf{\hat{V}}_4 \). Finally if \(T \) is compressed in \(N - \mathbf{\hat{W}} \), then an application of the loop theorem would imply that either some power of \(f(\gamma) \) is homotopically trivial in \(N \) or \(N = S^2 \times S^1 \). \(\square \)

Claim 3. Let \(Q = N - \mathbf{\hat{W}} \). \(g \) is homotopic to a map \(h : N \to M \) such that \(h \mid T \) is a homeomorphism onto \(S_2 \), \(h \mid W \) is degree-1 onto \(V_2 \), \(h \mid Q \) is degree-1 onto \(M - V_2 \), and \(h \mid W \) is \(\pi_1 \)-injective into \(V_2 \).

Proof of Claim 3. By Claim 1 the map on \(T \) obtained by first applying \(g \) and then projecting to \(S_2 \) (in \(V_4 - V_0 \)) is a degree-1 map, so by \([K]\) or \([BE]\) it is homotopic to a homeomorphism. Therefore, to obtain \(h \), first homotope \(g \) to \(g' \) via a homotopy supported in a tiny neighborhood of \(T \) so that \(g' \mid T \) is a homeomorphism, \(g'(W) \subset V_4 \), and \(g'(Q) \subset M - V_0 \). Applying the natural retractions of \(V_4 \) to \(V_2 \) and \(M - V_0 \) to \(M - \mathbf{\hat{V}}_2 \), to stuff the guts spilling out, we obtain \(h \). The degree-1 conclusions follow from the fact that \(g \) is degree-1. \(h \mid W \) is obviously \(\pi_1 \)-injective. \(\square \)
Claim 4. \(Q \) is irreducible and \(\pi_1 \)-injects into \(f(M - \mathring{V}_1) \).

Proof of Claim 4. The irreducibility of \(Q \) follows from the irreducibility of \(N \) and the fact that \(f(\gamma) \) is homotopically nontrivial. If \(D \) is a singular disc in \(f(M - \mathring{V}_1) \) such that \(\partial D \subset T \), then \(g(D) \subset M - V_0 \) and \(g | T : T \to M - V_0 \) is \(\pi_1 \)-injective implies that \(\partial D \) is homotopically trivial in \(T \). Therefore, \(T \pi_1 \)-injects into \(f(M - \mathring{V}_1) \) and, since \(T \) is incompressible in \(Q \), Claim 4 follows.

Claim 5. \(h | Q \) is \(\pi_1 \)-injective into \(M - V_2 \).

Proof of Claim 5. Let \(\delta \) be a closed curve in \(Q \). Let \(\alpha \) (resp. \(\beta \)) be the curve \(h(\delta) \) (resp. \(g(\delta) \)). By construction \(\alpha \subset M - V_2 \) and \(\beta \subset M - V_0 \). Furthermore \(\alpha \) is homotopic to \(\beta \) in \(M - V_0 \). \(\deg f = 1 \) implies that \(f^{-1}(\delta) \) contains a curve \(\epsilon \in M - V_1 \) such that \(f | \epsilon \) maps with nonzero degree to \(\delta \). \(\epsilon \) is homotopic to a nonzero multiple of \(\beta \) and, hence, a nonzero multiple of \(\alpha \) in \(M - V_0 \). Therefore, if \(h(\delta) \) is homotopically trivial in \(M - V_2 \), then \(\epsilon \) is homotopically trivial in \(M - V_1 \), so \(\delta \) is homotopically trivial in \(f(M - V_1) \) [\(\pi_1(f(M - \mathring{V}_1)) \) being torsion free] and so \(\delta \) is homotopically trivial in \(Q \) by Claim 4.

Claim 6. \(h \) is homotopic to a homeomorphism.

Proof of Claim 6. By Waldhausen [He] \(h : (Q, \partial Q) \to (M - \mathring{V}_2, \partial V_2) \) (resp. \(h : (W, \partial W) \to (V_2, \partial V_2) \)) is homotopic to a homeomorphism via a homotopy fixed on the boundary.

Remarks. If \(\gamma \) has a larger tube radius, e.g. \(12C \), then Claims 4–5 can be replaced by the observation that the homotopy equivalence splits along \(S_6 \) and \(T_6 \) to ones on \(V_6 \) and \(W \) and \(M - \mathring{N}(V_6) \) and \(Q \). Hint: there is an embedded torus \(T_i \) near \(f(S_i) \) for \(i = 2, 6, 10 \) which bounds a solid torus; furthermore, \(T_2, T_{10} \) bound a product homeomorphic to \(\text{Torus} \times I \). In this setting we now have enough room to homotop \(f \) so that \(f(S_6) = T_6 \). I thank Mike Freedman for suggesting this simplification.

Proof of Theorem 1.1. By Lemmas 1.3, 1.4, \(M \) has a finite covering space \(M_1 \) with a geodesic of tube radius \(> 4C \). Let \(N_1 \) be the associated covering space of \(N \). By [MSY] or [D] \(N_1 \) is irreducible. Now apply Lemma 1.5.

2. Related results and a conjecture

Conjecture 2.1. Let \(G \) and \(H \) be isomorphic finitely generated groups such that \(G \subset \text{PSL}(2, C) \subset \text{Homeo}(B^3) \) and \(H \subset \text{Homeo}(B^3) \). Suppose further:

(a) \(G \) and \(H \) act freely on \(\mathring{B}^3 \) with closed 3-manifold quotients;
(b) \(H | S^2 = G | S^2 \); and
(c) there exist subgroups \(H', G' \) of finite index in \(H \) and \(G \) such that \(H' | B^3 = G' | B^3 \).
Then H is conjugate to G in $\text{Homeo} B^3$.

Remark 2.2. Mostow rigidity and Conjecture 2.1 imply the conjecture “If $f : M \rightarrow N$ is a homotopy equivalence where M is hyperbolic and N is reducible, then f is homotopic to a homeomorphism.” For if N is an irreducible homotopy hyperbolic 3-manifold, then by Theorem 0.1 it has a regular finite sheeted covering space N_1 which is a hyperbolic 3-manifold. The well-known argument of Remark 0.2 shows that there exists a hyperbolic 3-manifold M' homotopy equivalent to N such that M is finitely covered by N_1 and if G (resp. H) is the group of covering transformations of H^3 corresponding to M' (resp. N), and extended to act on B^3, then G and H satisfy (a), (b), and (c), where H' and G' are the groups associated to N_1. The conclusion of Conjecture 2.1 implies that N is homeomorphic to M', and another application of Mostow rigidity shows that $M = M'$ and that the homotopy equivalence f is homotopic to a homeomorphism.

Theorem 2.3. Let $f : M \rightarrow N$ be a homotopy equivalence between closed irreducible 3-manifolds with residually finite fundamental group. Suppose further that there exists an element $\gamma \in \pi_1(M)$ which generates a maximal abelian subgroup $\langle \gamma \rangle$ whose associated covering space $M_\gamma = D^2 \times S^1$; then M and N have homeomorphic finite sheeted coverings.

Proof. Fix any Riemannian metric on M. Let $V_i, i = 0, 1, \ldots, 4$, be parallel solid tori in M_γ containing γ as a core with $\partial V_i = S_i$ at least C distance apart. It is well known (to algebraists, see [L]) that maximal abelian subgroups are separable (so given $a_1, \ldots, a_n \in \pi_1(M) - \langle \gamma \rangle$ there exists a subgroup of finite index containing $\langle \gamma \rangle$ but missing a_1, \ldots, a_n). An argument related to the one of Lemma 1.3 shows that there exists a finite covering M_1 of M such that M_1 is covered by M_γ and the projection of V_i to M_1 is an embedding. We abuse notation by continuing to call the image in M_1 of V_i by the same name. Let N_1 be the associated finite covering of N. Again by [MSY] or [D] N_1 is irreducible. The argument of Lemma 1.5 now shows that M_1 and N_1 are homeomorphic.

Combining Waldhausen [W] with the idea of the proof of Lemma 1.5 we obtain.

Theorem 2.4. If $f : M \rightarrow M$ is a homeomorphism homotopic to the identity and M is a hyperbolic 3-manifold, then there exists a finite covering space of M such that a lift of f is isotopic to the identity. □

Remark 2.5. Actually M need only satisfy the hypothesis of Theorem 2.3.

References

Department of Mathematics, California Institute of Technology, Pasadena, California 91125-0001

E-mail address: Gabai@juliet.caltech.edu