A characterization of Banach spaces containing

Author:
Haskell Rosenthal

Journal:
J. Amer. Math. Soc. **7** (1994), 707-748

MSC:
Primary 46B99; Secondary 46B15, 46B25

DOI:
https://doi.org/10.1090/S0894-0347-1994-1242455-4

MathSciNet review:
1242455

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A subsequence principle is obtained, characterizing Banach spaces containing , in the spirit of the author's 1974 characterization of Banach spaces containing .

**Definition**. A sequence in a Banach space is called *strongly summing* (s.s.) if is a weak-Cauchy basic sequence so that whenever scalars satisfy , then converges.

A simple permanence property: if is an (s.s.) basis for a Banach space and are its biorthogonal functionals in , then is a non-trivial weak-Cauchy sequence in ; hence fails to be weakly sequentially complete. (A weak-Cauchy sequence is called *non-trivial* if it is *non-weakly convergent*.)

**Theorem**. *Every non-trivial weak-Cauchy sequence in a (real or complex) Banach space has either an (s.s.) subsequence or a convex block basis equivalent to the summing basis*.

*Remark*. The two alternatives of the theorem are easily seen to be mutually exclusive.

**Corollary 1**. *A Banach space* *contains no isomorph of* *if and only if every non-trivial weak-Cauchy sequence in* *has an* (s.s.) *subsequence*.

Combining the - and -Theorems, we obtain

**Corollary 2**. *If* *is a non-reflexive Banach space such that* *is weakly sequentially complete for all linear subspaces* *of* , *then* *embeds in* ; *in fact*, *has property* .

The proof of the theorem involves a careful study of differences of bounded semi-continuous functions. The results of this study may be of independent interest.

**[Be]**S.F. Bellenot,*More quasi-reflexive subspaces*, Proc. Amer. Math. Soc.**101**(1987), 693-696. MR**911035 (89a:46030)****[Bes-P]**C. Bessaga and A. Pelczyński,*On bases and unconditional convergence of series in Banach spaces*, Studia Math.**17**(1958), 151-164. MR**0115069 (22:5872)****[Bo-De]**J. Bourgain and F. Delbaen,*A class of special**-spaces*, Acta Math.**145**(1980), 155-176. MR**590288 (82h:46023)****[Bo-R]**J. Bourgain and H.P. Rosenthal,*Geometrical implications of certain finite dimensional decompositions*, Bull. Soc. Math. Belg.**32**(1980), 57-82. MR**682992 (84d:46022)****[Do]**L.E. Dor,*On sequences spanning a complex**space*, Proc. Amer. Math. Soc.**47**(1975), 515-516. MR**0358308 (50:10774)****[E]**J. Elton,*Weakly null normalized sequences in Banach spaces*, Doctoral Thesis, Yale University, 1978.**[F]**C. Finet,*Subspaces of Asplund Banach spaces with the point continuity property*, Israel J. Math.**60**(1987), 191-198. MR**931876 (89f:46030)****[Go]**W.T. Gowers,*A space not containing**or a reflexive subspace*, preprint.**[HOR]**R. Haydon, E. Odell, and H. Rosenthal,*On certain classes of Baire-1 functions with applications to Banach space theory*, Functional Analysis Proceedings (The University of Texas at Austin 1987-89), Lecture Notes in Math., vol. 1470, Springer-Verlag, Berlin and New York, 1991, pp. 1-35. MR**1126734 (92h:46018)****[JR]**W.B. Johnson and H. Rosenthal,*On**-basic sequences and their applications to the study of Banach spaces*, Studia Math.**43**(1972), 77-92. MR**0310598 (46:9696)****[KL]**A.S. Kechris and A. Louveau,*A classification of Baire class 1 functions*, Trans. Amer. Math. Soc.**318**(1990), 209-236. MR**946424 (90f:26005)****[OR]**E. Odell and H. Rosenthal,*A double-dual characterization of separable Banach spaces containing*, Israel J. Math.**20**(1975), 375-384. MR**0377482 (51:13654)****[P1]**A. Pelczyński,*A connection between weakly unconditional convergence and weak completeness of Banach spaces*, Bull. Acad. Polon. Sci.**6**(1958), 251-253. MR**0115072 (22:5875)****[P2]**-,*Banach spaces on which every unconditionally converging operator is weakly compact*, Bull. Acad. Polon. Sci.**10**(1962), 641-648. MR**0149295 (26:6785)****[R1]**H. Rosenthal,*A characterization of Banach spaces containing*, Proc. Nat. Acad. Sci. U.S.A.**71**(1974), 2411-2413. MR**0358307 (50:10773)****[R2]**-,*Some recent discoveries in the isomorphic theory of Banach spaces*, Bull. Amer. Math. Soc.**84**(1978), 803-831. MR**499730 (80d:46023)****[R3]**-,*Weak*-Polish Banach spaces*, J. Funct. Anal.**76**(1988), 267-316. MR**924462 (89f:46038)****[R4]**-,*Some aspects of the subspace structure of infinite dimensional Banach spaces*, Approximation Theory and Functional Analysis (C. Chui, ed.), Academic Press, New York, 1991, pp. 151-176. MR**1090555****[R5]**-,*Differences of bounded semi-continuous functions*(in preparation).**[R6]**-,*Boundedly complete weak-Cauchy basic sequences in Banach spaces with the PCP*(to appear).

Retrieve articles in *Journal of the American Mathematical Society*
with MSC:
46B99,
46B15,
46B25

Retrieve articles in all journals with MSC: 46B99, 46B15, 46B25

Additional Information

DOI:
https://doi.org/10.1090/S0894-0347-1994-1242455-4

Keywords:
Weakly sequentially complete dual,
convex block basis,
the -Theorem,
differences of semi-continuous functions

Article copyright:
© Copyright 1994
American Mathematical Society