Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Harmonic analysis and pointwise ergodic theorems for noncommuting transformations

Author: Amos Nevo
Journal: J. Amer. Math. Soc. 7 (1994), 875-902
MSC: Primary 22D40; Secondary 28D15, 43A80
MathSciNet review: 1266737
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {F_k}$ denote the free group on $ k$ generators, $ 1 < k < \infty $, and let $ S$ denote a set of free generators and their inverses. Define $ {\sigma _n} \stackrel{d}{=} \frac{1}{{\char93 {S_n}}}{\Sigma _{w \in {S_n}}}w$, where $ {S_n} = \{ w:\vert w\vert = n\} $, and $ \vert \cdot \vert$ denotes the word length on $ {F_k}$ induced by $ S$. Let $ (X, \mathcal{B}, m)$ be a probability space on which $ {F_k}$ acts ergodically by measure preserving transformations. We prove a pointwise ergodic theorem for the sequence of operators $ \sigma _n^\prime = \frac{1}{2}({\sigma _n} + {\sigma _{n + 1}})$ acting on $ {L^2}(X)$, namely: $ \sigma _n^\prime f(x) \to \int_X {f\,dm} $ almost everywhere, for each $ f$ in $ {L^2}(X)$. We also show that the sequence $ {\sigma _{2n}}$ converges to a conditional expectation operator with respect to a $ \sigma $-algebra which is invariant under $ {F_k}$. The proof is based on the spectral theory of the (commutative) convolution subalgebra of $ {\ell ^1}({F_k})$ generated by the elements $ {\sigma _n},\,\;n \geq 0$. We then generalize the discussion to algebras arising as a Gelfand pair associated with the group of automorphisms $ G({r_1},\;{r_2})$ of a semi-homogeneous tree $ T({r_1},\;{r_2})$, where $ {r_1} \geq 2,\;{r_2} \geq 2,\;{r_1} + {r_2} > 4$. (The case of $ {F_k}$ corresponds to that of a homogeneous tree of valency $ 2k$.) We prove similar pointwise ergodic theorems for two classes of subgroups of $ G({r_1},\;{r_2})$. One is the class of closed noncompact boundary-transitive subgroups, including any simple algebraic group of split rank one over a local field, for example, $ PS{L_2}({\mathbb{Q}_p})$. The second class is that of lattices complementing a maximal compact subgroup. We also prove a strong maximal inequality in $ {L^2}(X)$ for the groups listed above, as well as a mean ergodic theorem for unitary representations of the groups (due to $ {\text{Y}}$. Guivarc'h for $ {F_k}$). Finally, we describe the structure and spectral theory of a noncommutative algebra which arises naturally in the present context, namely the double coset algebra associated with the subgroup of $ G({r_1},\;{r_2})$ stabilizing a geometric edge. The results are applied to prove mean ergodic theorems for a family of lattices in $ G({r_1},\;{r_2})$, which includes, for example, $ PS{L_2}(\mathbb{Z})$.

References [Enhancements On Off] (What's this?)

  • [A-K] V. I. Arnold and A. L. Krylov, Uniform distribution of points on a sphere and some ergodic properties of solutions of linear ordinary differential equations in the complex plane, Soviet Math. Dokl. 4 (1962), no. 1, 1-5.
  • [BK] F. Bouaziz-Kellil, Representations spheriques des groupes agissant transitivement sur un arbre semi-homogene, Bull. Soc. Math. France 116 (1988), 255-278. MR 984897 (90e:43008)
  • [C] P. Cartier, Harmonic analysis on trees, Proc. Sympos. Pure Math., vol. 26, Amer. Math. Soc., Providence, RI, 1972, pp. 419-424. MR 0338272 (49:3038)
  • [D-S] N. Dunford and J. T. Schwartz, Linear operators. I, II, Interscience, New York, 1963. MR 0188745 (32:6181)
  • [E-M] A. Eskin and C. McMullen, Mixing, counting and equidistribution in Lie groups, Duke Math. J. 71 (1993), 181-209. MR 1230290 (95b:22025)
  • [F-K-W] H. Furstenberg, Y. Katznelson, and B. Weiss, Ergodic theory and configurations in sets of positive density, Mathematics of Ramsey Theory (J. Nešetřil and V. Rödl, eds.), Springer Ser. Algorithms Combinatorics, vol. 5, Springer-Verlag, Berlin and New York, 1990. MR 1083601
  • [Fa] J. Faraut, Analyse harmonique sur la paires de Guelfand et les espaces hyperboliques, Analyse Harmonique (P. Eymard, ed.), Le Cours du C.I.M.P.A., Nancy, 1980.
  • [FT-N] A. Figa-Talamanca and C. Nebbia, Harmonic analysis and representation theory for groups acting on homogeneous trees, London Math. Soc. Lecture Notes Ser., vol. 162, Cambridge Univ. Press, London and New York, 1991. MR 1152801 (93f:22004)
  • [FT-P] A. Figa-Talamanca and M. A. Picardello, Harmonic analysis on free groups, Lecture Notes in Pure and Appl. Math., vol. 87, Dekker, New York, 1983. MR 710827 (85j:43001)
  • [G] Y. Guivarc'h, Généralisation d'un théorème de von Neumann, C.R. Acad. Sci. Paris 268 (1969), 1020-1023. MR 0251191 (40:4422)
  • [H-M] R. Howe and C. C. Moore, Asymptotic properties of unitary representations, J. Funct. Anal. 32 (1979), 72-96. MR 533220 (80g:22017)
  • [I] A. Iozzi, Harmonic analysis on the free product of two cyclic groups, Boll. Un. Mat. Ital. B (6) 4 (1985), 167-177. MR 783337 (86g:22020)
  • [I-P] A. Iozzi and M. A. Picardello, Spherical functions on symmetric graphs, Lecture Notes in Math., vol. 992, Springer-Verlag, Berlin and New York, 1983, pp. 344-387. MR 729363 (85c:43009)
  • [I-M] N. Iwahori and H. Matsumoto, On some Bruhat decompositions and the structure of the Hecke rings of $ p$-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 5-48. MR 0185016 (32:2486)
  • [J] R. Jones, Ergodic averages on spheres, J. Analyse Math. 61 (1993), 29-45. MR 1253437 (95g:28031)
  • [J-R-T] R. Jones, J. Rosenblatt, and A. Tempel'man, Ergodic theorems for convolutions of a measure on a group, Illinois J. Math. (to appear). MR 1283007 (95k:28040)
  • [K-S] A. Kolmogoroff and G. Seliverstoff, Sur la convergence des sèries de Fourier, Comptes Rendous 178 (1924), 303-306.
  • [Ma] H. Matsumoto, Analyse harmonique dans les Systemes de Tits bornologiques de type affine, Lecture Notes in Math., vol. 590, Springer-Verlag, Berlin and New York, 1977. MR 0579177 (58:28315)
  • [Mc] I. G. Macdonald, Spherical functions on a group of $ p$-adic type, Publications of the Ramanujan Institute, no. 2, University of Madras, India, 1971. MR 0435301 (55:8261)
  • [N1] A. Nevo, A structure theorem for boundary-transitive graphs, Israel J. Math. 75 (1991), 1-20. MR 1147288 (93h:05090)
  • [N2] -, Pointwise ergodic theorems for radial averages on simple Lie groups. I, Duke J. Math. (to appear).
  • [N3] -, Pointwise ergodic theorems for radial averages on simple Lie groups. II, preprint.
  • [N-S] A. Nevo and E. M. Stein, A generalization of Birkhoff's pointwise ergodic theorem, Acta Math. (to appear). MR 1294672 (95m:28025)
  • [Os] V. I. Oseledetč, Markov chains, skew products and ergodic theorems for ``general'' dynamic systems, Probab. Theory Related Fields 10 (1965), 499-504. MR 0189123 (32:6550)
  • [P] R. E. A. C. Paley, A proof of a theorem of averages, Proc. London Math. Soc. 31 (1930), 289-300.
  • [Pe] K. Petersen, Ergodic theory, Cambridge Univ. Press, London and New York, 1983.
  • [Sa] I. Satake, Theory of spherical functions on reductive algebraic groups over $ p$-adic fields, Inst. Hautes Études Sci. Publ. Math. 18 (1962), 5-69. MR 0195863 (33:4059)
  • [S] E. M. Stein, On the maximal ergodic theorem, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1894-1897. MR 0131517 (24:A1367)
  • [S1] -, Topics in harmonic analysis related to the Littlewood Paley theory, Ann. of Math. Stud., no. 63, Princeton Univ. Press, Princeton, NJ, 1970. MR 0252961 (40:6176)
  • [S2] -, Maximal functions: Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), 2174-2175. MR 0420116 (54:8133a)
  • [W] B. Weiss, Positive cones in Hilbert space and a maximal inequality, Inequalities III (O. Shisha, ed.), Academic Press, New York, 1972. MR 0340555 (49:5307)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 22D40, 28D15, 43A80

Retrieve articles in all journals with MSC: 22D40, 28D15, 43A80

Additional Information

Keywords: Harmonic analysis, pointwise ergodic theorems, semi-homogeneous trees, free groups, convolution algebras, Gelfand pairs, maximal inequality
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society