Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

Harmonic analysis and pointwise ergodic theorems for noncommuting transformations


Author: Amos Nevo
Journal: J. Amer. Math. Soc. 7 (1994), 875-902
MSC: Primary 22D40; Secondary 28D15, 43A80
MathSciNet review: 1266737
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {F_k}$ denote the free group on $ k$ generators, $ 1 < k < \infty $, and let $ S$ denote a set of free generators and their inverses. Define $ {\sigma _n} \stackrel{d}{=} \frac{1}{{\char93 {S_n}}}{\Sigma _{w \in {S_n}}}w$, where $ {S_n} = \{ w:\vert w\vert = n\} $, and $ \vert \cdot \vert$ denotes the word length on $ {F_k}$ induced by $ S$. Let $ (X, \mathcal{B}, m)$ be a probability space on which $ {F_k}$ acts ergodically by measure preserving transformations. We prove a pointwise ergodic theorem for the sequence of operators $ \sigma _n^\prime = \frac{1}{2}({\sigma _n} + {\sigma _{n + 1}})$ acting on $ {L^2}(X)$, namely: $ \sigma _n^\prime f(x) \to \int_X {f\,dm} $ almost everywhere, for each $ f$ in $ {L^2}(X)$. We also show that the sequence $ {\sigma _{2n}}$ converges to a conditional expectation operator with respect to a $ \sigma $-algebra which is invariant under $ {F_k}$. The proof is based on the spectral theory of the (commutative) convolution subalgebra of $ {\ell ^1}({F_k})$ generated by the elements $ {\sigma _n},\,\;n \geq 0$. We then generalize the discussion to algebras arising as a Gelfand pair associated with the group of automorphisms $ G({r_1},\;{r_2})$ of a semi-homogeneous tree $ T({r_1},\;{r_2})$, where $ {r_1} \geq 2,\;{r_2} \geq 2,\;{r_1} + {r_2} > 4$. (The case of $ {F_k}$ corresponds to that of a homogeneous tree of valency $ 2k$.) We prove similar pointwise ergodic theorems for two classes of subgroups of $ G({r_1},\;{r_2})$. One is the class of closed noncompact boundary-transitive subgroups, including any simple algebraic group of split rank one over a local field, for example, $ PS{L_2}({\mathbb{Q}_p})$. The second class is that of lattices complementing a maximal compact subgroup. We also prove a strong maximal inequality in $ {L^2}(X)$ for the groups listed above, as well as a mean ergodic theorem for unitary representations of the groups (due to $ {\text{Y}}$. Guivarc'h for $ {F_k}$). Finally, we describe the structure and spectral theory of a noncommutative algebra which arises naturally in the present context, namely the double coset algebra associated with the subgroup of $ G({r_1},\;{r_2})$ stabilizing a geometric edge. The results are applied to prove mean ergodic theorems for a family of lattices in $ G({r_1},\;{r_2})$, which includes, for example, $ PS{L_2}(\mathbb{Z})$.


References [Enhancements On Off] (What's this?)

  • [A-K] V. I. Arnold and A. L. Krylov, Uniform distribution of points on a sphere and some ergodic properties of solutions of linear ordinary differential equations in the complex plane, Soviet Math. Dokl. 4 (1962), no. 1, 1-5.
  • [BK] Ferdaous Bouaziz-Kellil, Représentations sphériques des groupes agissant transitivement sur un arbre semi-homogène, Bull. Soc. Math. France 116 (1988), no. 3, 255–278 (French, with English summary). MR 984897
  • [C] P. Cartier, Harmonic analysis on trees, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 419–424. MR 0338272
  • [D-S] Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, With the assistance of William G. Bade and Robert G. Bartle, Interscience Publishers John Wiley & Sons New York-London, 1963. MR 0188745
  • [E-M] Alex Eskin and Curt McMullen, Mixing, counting, and equidistribution in Lie groups, Duke Math. J. 71 (1993), no. 1, 181–209. MR 1230290, 10.1215/S0012-7094-93-07108-6
  • [F-K-W] Hillel Furstenberg, Yitzchak Katznelson, and Benjamin Weiss, Ergodic theory and configurations in sets of positive density, Mathematics of Ramsey theory, Algorithms Combin., vol. 5, Springer, Berlin, 1990, pp. 184–198. MR 1083601, 10.1007/978-3-642-72905-8_13
  • [Fa] J. Faraut, Analyse harmonique sur la paires de Guelfand et les espaces hyperboliques, Analyse Harmonique (P. Eymard, ed.), Le Cours du C.I.M.P.A., Nancy, 1980.
  • [FT-N] Alessandro Figà-Talamanca and Claudio Nebbia, Harmonic analysis and representation theory for groups acting on homogeneous trees, London Mathematical Society Lecture Note Series, vol. 162, Cambridge University Press, Cambridge, 1991. MR 1152801
  • [FT-P] Alessandro Figà-Talamanca and Massimo A. Picardello, Harmonic analysis on free groups, Lecture Notes in Pure and Applied Mathematics, vol. 87, Marcel Dekker, Inc., New York, 1983. MR 710827
  • [G] Yves Guivarc′h, Généralisation d’un théorème de von Neumann, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A1020–A1023 (French). MR 0251191
  • [H-M] Roger E. Howe and Calvin C. Moore, Asymptotic properties of unitary representations, J. Funct. Anal. 32 (1979), no. 1, 72–96. MR 533220, 10.1016/0022-1236(79)90078-8
  • [I] Alessandra Iozzi, Harmonic analysis on the free product of two cyclic groups, Boll. Un. Mat. Ital. B (6) 4 (1985), no. 1, 167–177 (English, with Italian summary). MR 783337
  • [I-P] Alessandra Iozzi and Massimo A. Picardello, Spherical functions on symmetric graphs, Harmonic analysis (Cortona, 1982) Lecture Notes in Math., vol. 992, Springer, Berlin, 1983, pp. 344–386. MR 729363, 10.1007/BFb0069168
  • [I-M] N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of 𝔭-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 5–48. MR 0185016
  • [J] Roger L. Jones, Ergodic averages on spheres, J. Anal. Math. 61 (1993), 29–45. MR 1253437, 10.1007/BF02788837
  • [J-R-T] Roger Jones, Joseph Rosenblatt, and Arkady Tempelman, Ergodic theorems for convolutions of a measure on a group, Illinois J. Math. 38 (1994), no. 4, 521–553. MR 1283007
  • [K-S] A. Kolmogoroff and G. Seliverstoff, Sur la convergence des sèries de Fourier, Comptes Rendous 178 (1924), 303-306.
  • [Ma] Hideya Matsumoto, Analyse harmonique dans les systèmes de Tits bornologiques de type affine, Lecture Notes in Mathematics, Vol. 590, Springer-Verlag, Berlin-New York, 1977 (French). MR 0579177
  • [Mc] I. G. Macdonald, Spherical functions on a group of 𝑝-adic type, Ramanujan Institute, Centre for Advanced Study in Mathematics,University of Madras, Madras, 1971. Publications of the Ramanujan Institute, No. 2. MR 0435301
  • [N1] Amos Nevo, A structure theorem for boundary-transitive graphs with infinitely many ends, Israel J. Math. 75 (1991), no. 1, 1–19. MR 1147288, 10.1007/BF02787179
  • [N2] -, Pointwise ergodic theorems for radial averages on simple Lie groups. I, Duke J. Math. (to appear).
  • [N3] -, Pointwise ergodic theorems for radial averages on simple Lie groups. II, preprint.
  • [N-S] Amos Nevo and Elias M. Stein, A generalization of Birkhoff’s pointwise ergodic theorem, Acta Math. 173 (1994), no. 1, 135–154. MR 1294672, 10.1007/BF02392571
  • [Os] V. I. Oseledec, Markov chains, skew products and ergodic theorems for “general” dynamic systems, Teor. Verojatnost. i Primenen. 10 (1965), 551–557 (Russian, with English summary). MR 0189123
  • [P] R. E. A. C. Paley, A proof of a theorem of averages, Proc. London Math. Soc. 31 (1930), 289-300.
  • [Pe] K. Petersen, Ergodic theory, Cambridge Univ. Press, London and New York, 1983.
  • [Sa] Ichirô Satake, Theory of spherical functions on reductive algebraic groups over 𝔭-adic fields, Inst. Hautes Études Sci. Publ. Math. 18 (1963), 5–69. MR 0195863
  • [S] E. M. Stein, On the maximal ergodic theorem, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1894–1897. MR 0131517
  • [S1] Elias M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory., Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. MR 0252961
  • [S2] Elias M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174–2175. MR 0420116
  • [W] Benjamin Weiss, Positive cones in Hilbert space and a maximal inequality, Inequalities, III (Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin), Academic Press, New York, 1972, pp. 353–358. MR 0340555

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 22D40, 28D15, 43A80

Retrieve articles in all journals with MSC: 22D40, 28D15, 43A80


Additional Information

DOI: https://doi.org/10.1090/S0894-0347-1994-1266737-5
Keywords: Harmonic analysis, pointwise ergodic theorems, semi-homogeneous trees, free groups, convolution algebras, Gelfand pairs, maximal inequality
Article copyright: © Copyright 1994 American Mathematical Society