Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

On the locus of Hodge classes


Authors: Eduardo Cattani, Pierre Deligne and Aroldo Kaplan
Journal: J. Amer. Math. Soc. 8 (1995), 483-506
MSC: Primary 14D07; Secondary 14C30, 32G20, 32J25
DOI: https://doi.org/10.1090/S0894-0347-1995-1273413-2
MathSciNet review: 1273413
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ S$ be a nonsingular complex algebraic variety and $ \mathcal{V}$ a polarized variation of Hodge structure of weight $ 2p$ with polarization form $ Q$. Given an integer $ K$, let $ {S^{(K)}}$ be the space of pairs $ (s,u)$ with $ s \in S$, $ u \in {\mathcal{V}_s}$ integral of type $ (p,p)$, and $ Q(u,u) \leq K$. We show in Theorem 1.1 that $ {S^{(K)}}$ is an algebraic variety, finite over $ S$. When $ \mathcal{V}$ is the local system $ {H^{2p}}({X_s},\mathbb{Z})$/torsion associated with a family of nonsingular projective varieties parametrized by $ S$, the result implies that the locus where a given integral class of type $ (p,p)$ remains of type $ (p,p)$ is algebraic.


References [Enhancements On Off] (What's this?)

  • [1] E. Cattani and A. Kaplan, Polarized mixed Hodge structures and the local monodromy of a variation of Hodge structure, Invent. Math. 67 (1982), 101-115. MR 664326 (84a:32046)
  • [2] -, Degenerating variations of Hodge structure, Actes du Colloque de Théorie de Hodge, Luminy 1987. Astérisque 179-180 (1989), 67-96. MR 1042802 (91k:32019)
  • [3] E. Cattani, A. Kaplan, and W. Schmid, Degeneration of Hodge structures, Ann. of Math. (2) 123 (1986), 457-535. MR 840721 (88a:32029)
  • [4] P. Deligne, Equations différentielles à points singuliers réguliers, Lecture Notes in Math., vol 163, Springer-Verlag, Berlin and New York, 1970. MR 0417174 (54:5232)
  • [5] P. Griffiths, ed., Topics in transcendental algebraic geometry, Ann. of Math. Stud., no. 106, Princeton Univ. Press, Princeton, NJ, 1984. MR 756842 (86b:14004)
  • [6] W. Schmid, Variations of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973), 211-319. MR 0382272 (52:3157)
  • [7] A. Weil, Abelian varieties and the Hodge ring, André Weil: Collected Papers III, Springer-Verlag, Berlin and New York, 1979, pp. 421-429.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 14D07, 14C30, 32G20, 32J25

Retrieve articles in all journals with MSC: 14D07, 14C30, 32G20, 32J25


Additional Information

DOI: https://doi.org/10.1090/S0894-0347-1995-1273413-2
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society