Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Schubert polynomials for the classical groups


Authors: Sara Billey and Mark Haiman
Journal: J. Amer. Math. Soc. 8 (1995), 443-482
MSC: Primary 05E15; Secondary 14M15
DOI: https://doi.org/10.1090/S0894-0347-1995-1290232-1
MathSciNet review: 1290232
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] I. N. Bernstein, I. M. Gel'fand, and S. I. Gel'fand, Schubert cells and cohomology of the spaces $ G/P$, Russian Math. Surveys 28 (1973), no. 3, 1-26. MR 0429933 (55:2941)
  • [2] N. Bourbaki, Groupes et algebras de Lie, Chapitres 4, 5, 6, Hermann, Paris, 1968. MR 0240238 (39:1590)
  • [3] S. C. Billey, W. Jockusch, and R. P. Stanley, Some combinatorial properties of Schubert polynomials, J. Algebraic Combin. 2 (1993), 345-374. MR 1241505 (94m:05197)
  • [4] M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. 7 (1974), 53-88. MR 0354697 (50:7174)
  • [5] P. Edelman and C. Greene, Balanced tableaux, Adv. Math. 63 (1987), 42-99. MR 871081 (88b:05012)
  • [6] S. Fomin and A. N. Kirillov, Combinatorial $ {B_n}$ analogues of Schubert polynomials, Manuscript, M.I.T., 1993.
  • [7] S. Fomin and R. P. Stanley, Schubert polynomials and the nilCoxeter algebra, Adv. Math. 103 (1994), 196-207. MR 1265793 (95f:05115)
  • [8] I. Gessel and G. Viennot, Determinants and plane partitions, preprint, 1983.
  • [9] M. Haiman, Dual equivalence with applications, including a conjecture of Proctor, Discrete Math. 99 (1992), 79-113. MR 1158783 (93h:05173)
  • [10] S. L. Kleiman, Problem 15. Rigorous foundation of Schubert's enumerative caculus, Mathematical Developments Arising from Hilbert Problems (F. E. Browder, ed.), Proc. Sympos. Pure Math., vol. 28, Part II, Amer. Math. Soc., Providence, RI, 1976, pp. 445-482. MR 0429938 (55:2946)
  • [11] S. L. Kleiman and D. Laksov, Schubert calculus, Amer. Math. Monthly 79 (1972), 1061-1082. MR 0323796 (48:2152)
  • [12] A. Lascoux and M.-P. Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris 294 (1982), 447-450. MR 660739 (83e:14039)
  • [13] I. G. Macdonald, Notes on Schubert polynomials, Publications du L.A.C.I.M., vol. 6, Université du Québec, Montréal, 1991. MR 1161461 (93d:05159)
  • [14] -, Symmetric functions and Hall polynomials, Oxford Univ. Press, London and New York, 1979. MR 553598 (84g:05003)
  • [15] P. Pragacz, Algebro-geometric applications of Schur $ S$- and $ Q$-polynomials, Topics in Invariant Theory (M.-P. Malliavin, ed.), Lecture Notes in Math., vol. 1478, Springer-Verlag, Berlin and New York, 1991, pp. 130-191. MR 1180989 (93h:05170)
  • [16] B. E. Sagan, Shifted tableaux, Schur $ Q$-functions, and a conjecture of R. Stanley, J. Combin. Theory Ser. A 45 (1987), 62-103. MR 883894 (88f:05011)
  • [17] R. P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin. 5 (1984), 359-372. MR 782057 (86i:05011)
  • [18] -, Some combinatorial aspects of the Schubert calculus, Combinatoire et Représentation du Groupe Symétrique (Strasbourg, 1976) (D. Foata, ed.), Lecture Notes in Math., vol. 579, Springer-Verlag, Berlin and New York, 1977, pp. 217-251. MR 0465880 (57:5766)
  • [19] M. Wachs, Flagged Schur functions, Schubert polynomials, and symmetrizing operators, J. Combin. Theory Ser. A 40 (1985), 276-289. MR 814415 (87i:05031)
  • [20] D. R. Worley, A theory of shifted Young tableaux, Ph.D. Thesis, M.I.T., 1984.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 05E15, 14M15

Retrieve articles in all journals with MSC: 05E15, 14M15


Additional Information

DOI: https://doi.org/10.1090/S0894-0347-1995-1290232-1
Keywords: Schubert polynomials, flag varieties, cohomology
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society