Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

On ranks of twists of elliptic curves and power-free values of binary forms


Authors: C. L. Stewart and J. Top
Journal: J. Amer. Math. Soc. 8 (1995), 943-973
MSC: Primary 11G05; Secondary 11N36
DOI: https://doi.org/10.1090/S0894-0347-1995-1290234-5
MathSciNet review: 1290234
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] F. Beukers and J. Stienstra, On the Picard-Fuchs equation and the formal Brauer group of certain elliptic $ K3$-surfaces, Math. Ann. 271 (1985), 269-304. MR 783555 (86j:14045)
  • [2] B. J. Birch and N. Stephens, The parity of the rank of the Mordell-Weil group, Topology 5 (1966), 295-299. MR 0201379 (34:1263)
  • [3] B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. I, J. Reine Angew. Math. 212 (1963), 7-25. MR 0146143 (26:3669)
  • [4] -, Notes on elliptic curves. II, J. Reine Angew. Math. 218 (1965), 79-108. MR 0179168 (31:3419)
  • [5] -, Elliptic curves and modular functions, Modular Functions of One Variable IV (B. J. Birch and W. Kuyk, eds.), Lecture Notes in Math., vol. 476, Springer-Verlag, Berlin, New York, and Heidelberg, 1975, pp. 2-32. MR 0384813 (52:5685)
  • [6] A. Brumer, The average rank of elliptic curves. I, Invent. Math. 109 (1992), 445-472. MR 1176198 (93g:11057)
  • [7] A. Brumer and O. McGuinness, The behaviour of the Mordell-Weil group of elliptic curves, Bull. Amer. Math. Soc. (N.S.) 23 (1990), 375-382. MR 1044170 (91b:11076)
  • [8] M. Craig, A type of class group for imaginary quadratic fields, Acta Arith. 22 (1973), 449-459. MR 0318098 (47:6647)
  • [9] -, A construction for irregular discriminants, Osaka J. Math. 14 (1977), 365-402. MR 0450226 (56:8522)
  • [10] D. S. Dummit, Néron models, Tate curves and Mestre's technique of using elliptic curves to construct quadratic fields with non-trivial $ 5$-rank, Number Theory Seminar, Montréal, 1989.
  • [11] P. Erdős and K. Mahler, On the number of integers which can be represented by a binary form, J. London Math. Soc. 13 (1938), 134-139.
  • [12] G. Frey, On the Selmer group of twists of elliptic curves with $ \mathbb{Q}$-rational torsion points, Canad. J. Math. 40 (1988), 649-665. MR 960600 (89k:11043)
  • [13] M. Fried, Constructions arising from Néron's high rank curves, Trans. Amer. Math. Soc. 281 (1984), 615-631. MR 722765 (86d:14039)
  • [14] D. Goldfeld, Conjectures on elliptic curves over quadratic fields, Number Theory (Proc. Conf. in Carbondale, 1979) (M. B. Nathanson, ed.), Lecture Notes in Math., vol. 751, Springer-Verlag, Berlin, New York, and Heidelberg, 1979, pp. 108-118. MR 564926 (81i:12014)
  • [15] F. Gouvêa and B. Mazur, The square-free sieve and the rank of elliptic curves, J. Amer. Math. Soc. 4 (1991), 1-23. MR 1080648 (92b:11039)
  • [16] G. Greaves, Power-free values of binary forms, Quart. J. Math. Oxford Ser. (2) 43 (1992), 45-65. MR 1150469 (92m:11098)
  • [17] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., Oxford Univ. Press, London and New York, 1979. MR 568909 (81i:10002)
  • [18] T. Honda, Isogenies, rational points and section points of group varieties, Japan. J. Math. 30 (1960), 84-101. MR 0155828 (27:5762)
  • [19] C. Hooley, On power-free values of polynomials, Mathematika 14 (1967), 21-26. MR 0214556 (35:5405)
  • [20] -, Applications of sieve methods to the theory of numbers, Cambridge Univ. Press, Cambridge, 1976. MR 0404173 (53:7976)
  • [21] J. I. Igusa, Arithmetic variety of moduli for genus two, Ann. of Math. (2) 72 (1960), 612-649. MR 0114819 (22:5637)
  • [22] K. Kramer, Arithmetic of elliptic curves upon quadratic extension, Trans. Amer. Math. Soc. 264 (1981), 121-135. MR 597871 (82g:14028)
  • [23] K. Kramer and J. Tunnell, Elliptic curves and local $ \varepsilon $-factors, Compositio Math. 46 (1982), 307-352. MR 664648 (83m:14031)
  • [24] J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, Algebraic Number Fields (A. Fröhlich, ed.), Academic Press, London and New York, 1977, pp. 409-464. MR 0447191 (56:5506)
  • [25] E. Liverance, Heights of Heegner points in a family of elliptic curves, Ph.D. Thesis, University of Maryland, 1992.
  • [26] K. Mahler, Zur Approximation algebrischer Zahlen. I (Über den gröszten Primteiler binärer Formen), Math. Ann. 107 (1933), 691-730. MR 1512822
  • [27] -, Zur Approximation algebrischer Zahlen. III (Über die mittlere Anzahl der Darstellungen groszer Zahlen durch binäre Formen), Acta Math. 62 (1933), 91-166. MR 1555382
  • [28] L. Mai, The analytic rank of a family of elliptic curves, Canad. J. Math. 45 (1993), 847-862. MR 1227663 (94d:11043)
  • [29] J.-F. Mestre, Courbes elliptiques et groupes de classes d'idéaux de certains corps quadratiques, J. Reine Angew. Math. 343 (1983), 23-35. MR 705875 (84m:12004)
  • [30] -, Rang des courbes elliptiques d'invariant donné, C. R. Acad. Sci. Paris Sér. I 314 (1992), 919-922. MR 1168325 (93e:11075)
  • [31] -, Courbes elliptiques de rang $ \geq 12$ sur $ \mathbb{Q}(t)$, C. R. Acad. Sci. Paris Sér. I 313 (1991), 171-174. MR 1122689 (92m:11052)
  • [32] L. J. Mordell, Diophantine equations, Academic Press, London and New York, 1969. MR 0249355 (40:2600)
  • [33] S. Nakano, Construction of pure cubic fields with large $ 2$-class groups, Osaka J. Math. 25 (1988), 161-170. MR 937193 (89f:11149)
  • [34] A. Néron, Propriétés arithmetiques de certaines familles de courbes algebriques, Proc. Internat. Congr. (Amsterdam, 1954), vol. III, Noordhoff, Groningen, and North-Holland, Amsterdam, 1956, pp. 481-488. MR 0087210 (19:321b)
  • [35] U. Schneiders and H. G. Zimmer, The rank of elliptic curves upon quadratic extension, Computational Number Theory (A. Pethö, M. Pohst, H. C. Williams, and H. G. Zimmer, eds.), Walter de Gruyter, Berlin and New York, 1991, pp. 239-260. MR 1151868 (92m:11053)
  • [36] C. Schoen, Bounds for rational points on twists of constant hyperelliptic curves, J. Reine Angew. Math. 411 (1990), 196-204. MR 1072980 (91g:11068)
  • [37] R. J. Schoof, Class groups of complex quadratic fields, Math. Comp. 41 (1983), 295-302. MR 701640 (84h:12005)
  • [38] J.-P. Serre, Lectures on the Mordell-Weil theorem, Vieweg, Braunschweig/Wiesbaden, 1989. MR 1002324 (90e:11086)
  • [39] T. Shioda, An infinite family of elliptic curves over $ \mathbb{Q}$ with large rank via Néron's method, Invent. Math. 106 (1991), 109-119. MR 1123376 (92h:11048)
  • [40] J. H. Silverman, Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math. 342 (1983), 197-211. MR 703488 (84k:14033)
  • [41] -, Divisibility of the specialization map for families of elliptic curves, Amer. J. Math. 107 (1985), 555-565. MR 789655 (87f:14027)
  • [42] -, The arithmetic of elliptic curves, Graduate Texts in Math., vol. 106, Springer-Verlag, Berlin, New York, and Heidelberg, 1985.
  • [43] C. L. Stewart, On the number of solutions of polynomial congruences and Thue equations, J. Amer. Math. Soc. 4 (1991), 793-835. MR 1119199 (92j:11032)
  • [44] J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular Functions of One Variable. IV (B. J. Birch and W. Kuyk, eds.), Lecture Notes in Math., vol. 476, Springer-Verlag, New York and Heidelberg, 1975, pp. 33-52. MR 0393039 (52:13850)
  • [45] J. T. Tate and I. R. Shafarevich, The rank of elliptic curves, Soviet Math. Dokl. 8 (1967), 917-920.
  • [46] J. Top, Néron's proof of the existence of elliptic curves over $ \mathbb{Q}$ with rank at least 11, R. U. Utrecht Dept. of Math. preprint series, no. 476, 1987.
  • [47] D. Zagier and G. Kramarz, Numerical investigations related to the $ L$-series of certain elliptic curves, J. Indian Math. Soc. 52 (1987), 51-69. MR 989230 (90d:11072)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 11G05, 11N36

Retrieve articles in all journals with MSC: 11G05, 11N36


Additional Information

DOI: https://doi.org/10.1090/S0894-0347-1995-1290234-5
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society