Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

On the global dynamics of attractors
for scalar delay equations


Authors: Christopher McCord and Konstantin Mischaikow
Journal: J. Amer. Math. Soc. 9 (1996), 1095-1133
MSC (1991): Primary 58F12, 58F32, 34K05
DOI: https://doi.org/10.1090/S0894-0347-96-00207-X
MathSciNet review: 1354959
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A semi-conjugacy from the dynamics of the global attractors for a family of scalar delay differential equations with negative feedback onto the dynamics of a simple system of ordinary differential equations is constructed. The construction and proof are done in an abstract setting, and hence, are valid for a variety of dynamical systems which need not arise from delay equations. The proofs are based on the Conley index theory.


References [Enhancements On Off] (What's this?)

  • 1. S.-N. Chow and J. Mallet-Paret, Integral averaging and bifurcation, JDE 26 (1977), 112--158. MR 58:7718
  • 2. C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Lecture Notes 38 A.M.S. Providence, R.I. 1978. MR 80c:58009
  • 3. J. D. Farmer, Chaotic attractors of an infinite-dimensional dynamical system, Physica D 4 (1982), 366--393. MR 83m:58049
  • 4. A. Floer, A refinement of the Conley index and an application to the stability of hyperbolic invariant sets, Erg. Thy. Dyn. Sys. 7 (1987), 93--103. MR 88g:58143
  • 5. B. Fiedler and J. Mallet-Paret, Connections between Morse sets for delay-differentail equations, J. Reine und Angew. Math. 397 (1989), 23--41. MR 90b:58238
  • 6. R. Franzosa, The connection matrix theory for Morse decompositions, Trans. AMS 310 (1988), 781-803. MR 90g:58111
  • 7. T. Gedeon and K. Mischaikow, Structure of the global attractor of cyclic feedback systems, J. Dyn. Diff. Eqs., 7 (1995) 141-190. CMP 95:09
  • 8. J. K. Hale, Theory of Functional Differential Equations, Berlin-Heidelberg-New York 1977. MR 58:22904
  • 9. J. K. Hale, Asymptotic Behaviour of Dissipative Systems, Math. Surveys and Monographs 25 A.M.S., 1988. MR 89g:58059
  • 10. J. K. Hale, L. T. Magalhães, and W. M. Oliva, An Introduction to Infinite Dimensional Dynamical Systems - Geometric Theory, Appl. Math. Sci. 47, Springer-Verlag 1984. MR 86h:34001
  • 11. M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science 197 (1977), 287--366.
  • 12. J. Mallet-Paret, Morse decompositions for delay-differential equations, J. Diff. Eqtns. 72 (1988), 270--315. MR 89m:58182
  • 13. C. McCord, Mappings and homological properties in the homology Conley index, Erg. Th. & Dyn. Sys. 8* (1988), 175 --198. MR 89m:58177
  • 14. C. McCord, Mappings and Morse decompositions in the homology Conley index, Indiana Univ. Math. J. 40 (1991), 1061--1082. MR 92j:58064
  • 15. C. McCord, K. Mischaikow, and M. Mrozek, Zeta functions, periodicity, and the Conley index for maps and flows with transverse cross-sections, J. Diff. Eqs. (in press). CMP 96:02
  • 16. K. Mischaikow, Conley's connection matrix, Dynamics of Infinite Dimensional Systems, S.-N. Chow and J. Hale, eds., Springer-Verlag (1987), 179--186. MR 88g:00021
  • 17. K. Mischaikow and Y. Morita, Dynamics on the Global Attractor of a Gradient Flow arising in the Ginzburg-Landau Equation, Jap. J.Ind. Appl. Math. 11 (1994), 185--202. MR 95h:58082
  • 18. M. Mrozek, Leray functor and cohomological index for discrete dynamical systems, Trans. A. M. S. 318 (1990), 149--178. MR 90f:34076
  • 19. K. P. Rybakowski, The Homotopy Index and Partial Differential equations, Universitext, Springer-Verlag 1987. MR 89d:58025
  • 20. D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. A. M. S. 291 (1985), 1--41. MR 87e:58182
  • 21. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. MR 89m:58056

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 58F12, 58F32, 34K05

Retrieve articles in all journals with MSC (1991): 58F12, 58F32, 34K05


Additional Information

Christopher McCord
Affiliation: Institute for Dynamics University of Cincinnati Cincinnati, Ohio 45221-0025
Email: chris.mccord@uc.edu

Konstantin Mischaikow
Affiliation: Center for Dynamical Systems and Nonlinear Studies, Georgia Institute of Technology, Atlanta, Georgia 30332
Email: mischaik@math.gatech.edu

DOI: https://doi.org/10.1090/S0894-0347-96-00207-X
Received by editor(s): July 24, 1992
Received by editor(s) in revised form: September 5, 1995
Additional Notes: Research was supported in part by NSF Grant DMS-9101412.
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society