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ZARISKI GEOMETRIES

EHUD HRUSHOVSKI AND BORIS ZILBER

1. Introduction

Let k be an algebraically closed field. The set of ordered n-tuples from k is viewed
as an n-dimensional space; a subset described by the vanishing of a polynomial, or
a family of polynomials, is called an algebraic set, or a Zariski closed set. Algebraic
geometry describes the behavior of these sets. The goal of this paper is a converse.
We start with a set X , together with a collection of subsets of the powers of X ,
satisfying certain axioms of a geometric nature. We then show that the points of
X can be identified with a curve over an algebraically closed field k, in such a way
that the given collection of sets is precisely the family of Zariski closed ones.

This project is of course familiar if one allows only subsets of kn defined by linear
equations. The reader is referred to E. Artin’s Geometric algebra, Introduction to
Chapter II [AE], paraphrased above, which could serve as a better introduction to
the present paper.

As customary we use topological language to describe our axioms for the alge-
braic sets. We recall some pertinent terms (see e.g. [Ha]). A topological space is
Noetherian if it has the descending chain condition on closed subsets. A closed set
is irreducible if it is not the union of two proper closed subsets. If X is Noetherian,
then every closed set can be written as a finite union of irreducible closed sets.
These are uniquely determined (provided no one is a subset of the other), and are
called the irreducible components of the given set. We say that X has dimension n
if n is the maximal length of a chain of closed irreducible sets C0 ⊂ C2 ⊂ · · · ⊂ Cn
(proper inclusions). The dimension of a closed set is its dimension as a subspace of
X . A map f is closed if the image of a closed set is closed. If X is irreducible and
a property P holds for all elements of X outside of a proper closed subset, we say
that P holds generically on X , or that a generic point satisfies P . If C ⊆ E × Y
and a ∈ E, we let C(a) = {y ∈ Y : (a, y) ∈ C}.

Definition. A Zariski geometry on a set X is a topology on Xn for each n, satis-
fying:

(Z0) Let fi be a constant map (fi(x1, . . . , xn) = c) or a projection
(fi(x1, . . . , xn) = xj(i)). Let f(x) = (f1(x), . . . , fm(x)). Then f : Xn → Xm is
continuous. The diagonals xi = xj of Xn are closed.
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2 EHUD HRUSHOVSKI AND BORIS ZILBER

(Z1) Let C be a closed irreducible subset ofXn, and let π be the projection toXk.
Then there exists a proper closed subset F of cl(πC) such that πC ⊇ cl(πC)− F .

(Z2) X is irreducible and uniformly one-dimensional : if C ⊆ Xn ×X is closed,
then for some m, for all a ∈ Xn, C(a) = X or |C(a)| ≤ m.

(Z3) (Dimension theorem) dim(Xn) ≤ n. Let U be a closed irreducible subset
of Xn, and let Tij be the diagonal xi = xj . Then every component of U ∩ Tij has
dimension ≥ dim(U)− 1.

Comments. (Z0) is needed in order to relate the various topologies; it replaces the
classical understanding that the topology on Xn is the product topology.
X is called complete if all projection maps are closed. Note that (Z1) then follows

trivially. We prefer not to assume completeness axiomatically, since we wish not to
exclude affine models. From a model theoretic point of view (Z1) is just “quantifier
elimination”; this will be explained in §2.

(Z2) states that X is one dimensional, i.e., every proper closed set is finite, but
in a way uniform for families of closed subsets.

(Z3) is the key structural condition. It plays the dual role of giving a basic
dimension theory for closed sets, and of allowing later a theory of specializations,
leading up to what is implicitly a construction of a tangent space. (This suggests
that (Z3) can be viewed as a smoothness condition on X ; see the remark following
1.1 below.)

The axioms we have so far are valid also in the linear situation, where k is
identified with a field k, and a closed subset of kn is one defined by linear equations.
In the linear case, k need not be algebraically closed or even commutative; we refer
to the resulting structure as the linear Zariski geometry over k. To rule out this
class we assert the existence of a rich enough family of plane curves.

By a plane curve over X we mean an irreducible one-dimensional subset of X2.
A family of plane curves consists of a closed irreducible set E ⊆ Xn (parametrizing
the family), and a closed irreducible C ⊆ E ×X2, such that C(e) is a plane curve
for generic e ∈ E.

Definition. A Zariski geometry X is very ample if there is a family C ⊆ E ×X2

of plane curves such that:

(i) For generic (a, b) ∈ X2 there exists a curve C(e) passing through a, b.
(ii) For any a, b ∈ X2 there exists e ∈ E such that C(e) passes through just one

of a, b.

If only (i) holds, X is called ample.

Any smooth algebraic curve C can be viewed as a Zariski geometry. One takes
the closed subsets to be the Zariski closed subsets of Cn for each n. Our main
result is the converse statement.

Theorem A. Let X be a very ample Zariski geometry. Then there exists a smooth
curve C over an algebraically closed field F , such that X,C are isomorphic as
Zariski geometries.

Here C is not necessarily complete (but is complete in the sense of algebraic
geometry iff X is complete as a Zariski geometry). It is worth noting the following
complement, showing that C,F are unique.
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ZARISKI GEOMETRIES 3

Proposition 1.1. Let C be a smooth curve over an algebraically closed field F ,
and C′ be a smooth curve over a field F ′. Suppose h : C → C′ is an isomorphism
of Zariski geometries (the induced map on Cn is a homeomorphism for each n).
Then there exists an isomorphism of fields hF : F → F ′. If F, F ′ are identified via
hF , then h becomes an isomorphism of algebraic varieties.

Remark. Let C be a curve, and suppose that the collection of Zariski closed subsets
of Cn makes it a Zariski geometry. Then C is nonsingular, or at worst has only

cusps for singularities, in the sense that the map f : C̃ → C from the normalization
of C to C is bijective. This follows from 4.7, 4.8 to be proved below. (Resolution
of cusps is irrelevant from the point of view of the Zariski structure; it is natural to
consider only curves for which bijective coverings are isomorphisms, and then the
Zariski condition (Z3) implies normality, hence smoothness.)

An arbitrary Zariski geometry can also be closely analyzed. If X is ample, but
not very ample, it can be shown to be in a certain sense a finite cover of the
projective line over an algebraically closed field (Theorem B). However no analog
of the Riemann existence theorem is valid here; there exist finite covers of the
projective line which do not arise from algebraic curves (Theorem C).

If X is not ample, but in a certain technical sense nondegenerate, then there
exists a division ring k canonically associated with X , and X is closely related to the
linear Zariski geometry over K. One shows that X interprets an Abelian group A
([Hr2]), and that the constructible subsets of An are Boolean combinations of cosets
([HP]). A precise structure theorem is then obtained for A ([HL]). (This paper uses
the constructible category, described in §2, but the result can be converted to the
Zariski framework, since one can identify the closed sets among the constructible
ones: they are the finite unions of cosets of constructible subgroups of An.)
X is called degenerate if the only nonconstant families of plane curves consist

of curves {a} ×X and X × {a}; the degenerate Zariski geometries have not been
studied in detail. In this paper we restrict ourselves to the ample case.

One can also define Zariski geometries of dimension higher than one (see 3.10).
Then any compact complex analytic manifold can be viewed as a Zariski geometry,
the closed sets being the closed analytic subvarieties. The theorems proved here
are geared for such higher-dimensional applications. (This is part of the reason
for insisting on removing the completeness assumption.) We refer the reader to
[HZ] for some statements of this type. In higher dimensions, one may have degen-
erate, ample, and nonample parts of the same geometry; they are not in general
easily separable. Here we will consider higher-dimensional objects only insofar as
they arise from, and are needed for the analysis of, one-dimensional ones. (Model
theoretically, these are called “almost strongly minimal”; they are characterized
by the existence of enough multi-valued maps into a one-dimensional geometry to
separate points. This holds if the points of the geometry are separated by a family
of irreducible closed sets of codimension one.)

A partial analog to Theorem 1 in higher dimensions follows immediately from
our results; if X is an almost strongly minimal Zariski geometry of dimension 2
or more, and there exists a family of curves on X such that any two points are
separated by a curve and any two points lie jointly on some curve, then there exists
a dense open subset of X isomorphic to an algebraic variety. It is likely that X
arises globally from an algebraic space in the sense of M. Artin, but we have not
proved this.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4 EHUD HRUSHOVSKI AND BORIS ZILBER

We will consistently use both the topological and the constructible category.
The following section, §2, contains a second introduction, from the latter point of
view. Results more easily stated in the constructible language are stated there.
The structure of the rest of the paper is as follows.
§2. Following the introduction, it is shown that the Zariski axioms have the

expected implications in the constructible category. The reader who approaches
the paper with model theoretic applications in mind may be willing to take these
for granted.
§3. Model theoretic preliminaries.
§4. Theory of specializations. In 4.1 it is shown that our assumptions carry over

to elementary extensions; in most applications this is known in advance, and so
may again be skipped. The second part of the section on the other hand develops
the central limit process that we will use to “differentiate” the given structure and
recognize underlying group structures.
§5. Imaginary elements; manifolds. We introduce manifolds over a Zariski ge-

ometry. This will give a topological structure to the field, which will be found by
constructible methods.
§6. Interpreting the field. We work in the constructible framework, using spe-

cializations as an additional tool. We quote here a certain extension of Weil’s theo-
rem, describing the structure of “groups” defined by finite-to-finite correspondences
rather than maps. We also implicitly use Cherlin’s characterization of nonnilpotent
groups of Morley rank 2, and Macintyre’s statement that infinite fields of finite
Morley rank are algebraically closed. See the introduction to this section for a
description of the method.
§7. Purity of the field. In this section we compare the two systems of Zariski

topologies on the field obtained in §6 (the one given by the geometry, and the alge-
braic one). We show first that projective space is complete in the richer topology,
and that the notions of irreducibility agree. We then prove Bezout’s theorem by the
classical process of moving an arbitrary algebraic curve to a union of lines within
an algebraic family, and conclude that as there are already enough algebraic curves
to demonstrate any admissible intersection behaviour, there is no room for others.
§8. Here we show that an ample (not necessarily very ample) Zariski geometry

is a finite cover of the projective line over a field, canonically. Here and in §9 we
work almost entirely in the constructible category, which seems the natural context
for “covers” when the geometry is not assumed complete. (Even the statement of
Theorem B below is somewhat unwieldy, inasmuch as it refers to closed sets.)
§9. We analyze covers of Zariski geometries. We see that every ample Zariski

geometry has a certain maximal quotient which is an algebraic curve, and the
corresponding cover has strong properties. In the very ample case, the quotient
can only be the full geometry, and Theorem A follows.
§10. We show that the results of §§8, 9 are nonempty by constructing a Zariski

geometry as a certain double cover of an elliptic curve, which is not isomorphic to
any curve and not interpretable in an algebraically closed field.

We are grateful to a number of people who read and greatly improved this paper
by their cogent suggestions and corrections: Bernhard Herwig, Anand Pillay, Frank
Wagner, and Martin Ziegler in Freiburg, Kobi Peterzil and Evgenia Rabinovich
in Jerusalem, Sasha Ivanov and Ludomir Newelski in Wroclaw, Dave Marker in
Chicago, and the referee.
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2. Constructible sets

If k is an algebraically closed field, a constructible subset of kn is a finite Boolean
combination of closed sets. The Tarski-Chevalley theorem states that the collection
of constructible sets is closed under projections. An axiomatization of the structure
of the constructible sets, analogous to the axiomatization above of the closed sets,
might run as follows.

Definition. A structure is an infinite set D together with a collection of subsets
of Dn (n = 1, 2, . . . ) closed under intersections, complements, projections and their
inverses, and containing the diagonals. These are called the 0-definable sets.

Definition. A structure D is strongly minimal if it satisfies: (SM) for every n ≥ 0
and every 0-definable C ⊆ Dn+1, there exists an integer m such that for all a ∈ Dn,
letting C(a) = {b ∈ D : (a, b) ∈ C}, either |C(a)| ≤ m or |D − C(a)| ≤ m.

(SM) is analogous to the one-dimensionality axiom (Z2). It is stated in dimen-
sion one, but a powerful dimension theory can be deduced from it for arbitrary
definable sets. Most simple dimension-theoretic properties of constructible sets in
algebraically closed fields follow from (SM).

This definition did not arise as an attempt to describe algebraically closed fields,
but rather came about naturally in a line of investigation in model theory starting
from the Lowenheim-Skolem theorem. One was led to consider categorical struc-
tures, ones fully described by their cardinality and first-order theory. (Thus the
complex field is determined by its cardinality, and being an algebraically closed
field of characteristic 0.) Morley [Mo] showed the existence of a dimension theory
for the definable sets in uncountable categorical structures; Baldwin and Lachlan
[BL] discovered that such structures are controlled by strongly minimal sets within
them.

It was suggested by the second author (see [Z]) that examples from algebraic
geometry have some importance in this context. A dividing line was introduced
among the strongly minimal sets:

Definition. A strongly minimal set D is locally modular if every definable family
of strongly minimal subsets of D2 has dimension at most 1.

If D arises from a Zariski geometry, this is equivalent to ampleness. The notion
of a family of definable sets and its dimension will be explained in §3.

It was conjectured that nonample strongly minimal sets are essentially linear
objects, whereas ample ones are essentially curves over an algebraically closed field.
This would be a constructible analog to Theorem A.

The first part of this conjecture was proved in [Hr2], but a counterexample to
the second was constructed in [Hr3]. However a considerable amount of technology
was developed towards proving the conjecture, some of which we will use here.
This technology is phrased in terms of constructible sets, rather than closed sets,
since no topology was assumed to exist. Even in the Zariski context however, the
constructible category is considerably more flexible than the topological one; in
many situations it is quite delicate to find whether a given construction leads to
a closed set, whereas the fact that it is constructible is usually trivial. We will
therefore work in both categories; we explain in §3 how to translate from one to
the other.

We now state the main structure theorem for ample Zariski geometries.
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6 EHUD HRUSHOVSKI AND BORIS ZILBER

Definition. Let D1, D2 be Zariski geometries. A (closed) Zariski map is a function
f : D1 → D2 inducing a (closed), continuous map on Dn

1 for each n.

Theorem B. Let D be an ample Zariski geometry. Then there exists an alge-
braically closed field K and a surjective Zariski map f : D → P1(K). f maps
constructible sets to (algebraically) constructible sets, and in fact is a closed Zariski
map on D − F for some finite F .

Note that the map f in Theorem B must have finite fibers: the inverse image
Ef of the diagonal on P1(K) is a closed equivalence relation on D; by (Z2) each
class must be finite or equal to D; since P1(K) has more than one point, the former
possibility must hold. One sees that P1(K) is interpreted in D; it is isomorphic to
D modulo the closed equivalence relation Ef ; and a closed subset of P1(K)n arises
from a closed subset of Dn respecting Ef . Moreover, no extra structure is induced
on P1(K) from D; any automorphism of P1(K) extends to an automorphism of
D. Thus D can be viewed as a finite cover of P1(K); however, the question of the
additional structure on D is delicate. Some light is thrown on the matter in §9. In
§10 however, the following is shown.

Theorem C. There exists a complete, ample, one-dimensional Zariski geometry
D that cannot be interpreted in an algebraically closed field. In particular, if C is
a curve over an algebraically closed field, then every Zariski map f : C → D is
constant.

Theorem B as stated does not include a canonicity statement; it is not clear for
example that every automorphism of D induces one of P1(K). We will remedy this
situation in the following way. Throughout the paper, we will use what might be
called the full language L(D) for the Zariski geometry D, in which an n-ary relation
symbol corresponds to every closed subset of Dn. Note that D may have nontrivial
automorphisms (bijections inducing homeomorphisms in every dimension). Such
automorphisms of D induce automorphisms of the language L. We define the
natural language L of D to be the sublanguage Lnat(D) of L(D) consisting of
all automorphism invariant relations. It appears to be quite unobvious that Lnat

includes anything more than the language of pure equality. However in §9 we will
show that the field of Theorem B and map f of Theorem B can be chosen 0-definable
in Lnat. Moreover:

Theorem B′. Let D be an ample Zariski geometry, and let Lnat be the natural
language of D. There exist a field K, a smooth curve C over K, and a surjective,
finite-to-one Zariski map f : D → C, all 0-definable in Lnat.

We will now show that a Zariski geometry, as defined above, is indeed a special
kind of strongly minimal set; in other words that quantifier elimination holds.

Proposition 2.1. Let D be a Zariski geometry. Then D admits elimination of
quantifiers : the projection of a constructible set is constructible.

Note that C(a) is closed if C is, C(a) being the inverse image of C under the map
taking x to (a, x). In particular, with C the diagonal, this shows every singleton is
closed.

Lemma 2.2. Dk is irreducible.
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Proof. We use induction on k. If Dk+1 ⊆ F1 ∪ F2, let

F ∗i = {a ∈ Dk : (a, x) ∈ Fi for all x ∈ D}.
Clearly F ∗i is closed. For any a ∈ Dk, Fi(a) = {x : (a, x) ∈ Fi} is closed, and D =
F1(a)∪F2(a), so by irreducibility of D, Fi(a) = D for some i. Thus F ∗1 ∪F ∗2 = Dk,
so F ∗i = Dk for some i, so Fi = Dk+1.

Lemma 2.3. Let π : Dn → Dk be a projection, C ⊆ Dn closed, and F = cl(πC).
If C is irreducible, so is F . If F is irreducible, then F = cl(πC′) for some irreducible
component C′ of C.

Proof. Let F = F1 ∪ F2, Fi closed. Then π−1Fi is closed, C = π−1F1 ∪ π−1F2, so
C = π−1F1 (say). Thus F = cl(ππ−1F1) ⊆ F1. Conversely suppose F is irreducible
and let C = C1 ∪ C2. Then F = cl(πC) = cl(πC1) ∪ cl(πC2), so F = cl(πCi) for
some i.

Lemma 2.4. Let E ⊆ Dn and C ⊆ E × D be closed. Suppose C(a) is finite for
some a ∈ E. Then C(a) is finite for all a ∈ E outside of a proper closed subset of
E.

Proof. If C(a) is infinite, then C(a) = D. So it suffices to prove that {a : C(a)
= D} is closed. But this set is the intersection over all d ∈ D of {a : (a, d) ∈ C} =
(d)C, which is closed.

The following lemma generalizes (Z3).

Lemma 2.5 (Dimension theorem). Let C1, C2 be closed irreducible subsets of Dn,
dim(Ci) = di. Then every component of C1∩C2 has dimension at least d1 +d2−n.

Proof. Let ∆i be the diagonal: xi = xn+i in D2n, and let ∆ =
⋂
i ∆i. There is an

isomorphism between C1 ∩C2 and (C1 ×C2)∩∆. As in 2.2 C1 ×C2 is irreducible,
and is easily seen to have dimension at least d1 + d2. Hence it suffices to show
that every component of C ∩∆ has dimension ≥ dim(C) − n, where C is a closed
irreducible subset of D2n. This follows by applying (Z3) to the intersections with
the diagonals ∆i, in succession.

Lemma 2.6. Let C ⊆ Dn be irreducible. Let π : Dn → Dk be a projection.

(a) If cl(π(C)) = Dk, then dim(C) ≥ k.
(b) If π−1(a) ∩ C is finite and nonempty for some a, then dim(C) ≤ k.
(c) dim(C) = k iff there exists a projection satisfying (a) and (b).

Proof. (a) By induction on k. We have π(C) ⊇ (Dk − F ) for some proper closed
subset F of Dk. For a ∈ D, let F (a) = {y ∈ Dk−1 : (a, y) ∈ F}. If for all a ∈ D,
F (a) = Dk−1, then F = Dk; a contradiction. Choose a ∈ D such that F (a) is a
proper closed subset of Dk−1. Let C′ = {x ∈ C : π(x) ∈ {a} ×Dk−1}. Then C′

is a proper closed subset of C. Let θ : Dk → Dk−1 be the projection, π′ = θπ.
Clearly π′(C′) contains Dk−1−F (a). Since Dk−1 is irreducible, cl(Dk−1−F (a)) =
Dk−1, and by 2.3 cl π′(C′′) = Dk−1 for some component C′′ of C′. By induction
dim(C′′) ≥ k − 1, so dim(C) ≥ k.

(b) Pick a such that π−1(a)∩C is finite. Let πi : Dk → D be the ith projection,
and let Ti = (πiπ)−1(πia). Let C0 = C, Ci+1 = (Ci∩Ti+1). Then Ck = π−1(a)∩C,
so dim(Ck) = 0. Using 2.5 inductively, every component of Ci has dimension
≥ dim(C)− i, so dim(Ck) ≥ dim(C) − k. Thus dim(C) ≤ k.
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A map f : X → Y is generically finite-to-one if the inverse image of a generic
point of f(X) is finite.

Claim. Let C be a proper closed irreducible subset of Dn. Then there exists a
generically finite-to-one map of C into Dn−1.

Proof. By induction on n. Consider Dn as Dn−1 ×D, and let π : Dn → Dn−1

be the projection. If π|C has a finite fiber, we are done by 2.4. Otherwise, for
any a ∈ πC, C(a) is an infinite closed subset of D, so by (Z2) it equals D. Hence
πC = {x ∈ Dn−1 : for all y ∈ D, (x, y) ∈ C} (a closed subset of Dn−1), and
C = πC×D. So πC is a proper closed subset of Dn−1. By induction there exists a
projection π′ ofDn−1 toDn−2 with a finite fiber on πC. The map (x, y) 7→ (π′(x), y)
from Dn to Dn−1 satisfies the requirement.

It follows using (b) that any proper closed subset of Dn has dimension ≤ n− 1.
Hence dim(Dn) = n.

Now to prove (c) we use induction on n. If C = Dn, then dim(C) = n, and the
identity map shows that (c) is true. If C is a proper subset of Dn, then by the claim
there exists π1 : Dn → Dn−1 with a finite fiber on C. By induction there exists a
projection π2 : Dn−1 → Dk such that cl(π2(cl(π1C))) = Dk, and π−1

2 (a) ∩ cl(π1C)
is finite for some a. We have k = dim(cl(π1C)), and by 2.3 cl(π1C) is irreducible.
Let F be a proper closed subset of cl(π1C) such that π1C ⊇ (cl(π1C) − F ), and
π−1

1 (a) ∩ C is finite for all a ∈ cl(π1C) − F (possible by 2.4 and (Z1)). Then
dim(F ) < k, so by (a) cl(π2F ) is a proper subset of Dk. Choose a ∈ Dk with
a 6∈ cl(π2F ), and further such that π−1

2 (a) is finite. Then (π2π1)−1(a) is finite.
Further π2π1C contains π2 cl(π1C)−π2F , hence is dense in Dk. Thus π2π1 satisfies
both (a) and (b).

Proof of 2.1. We must show that if C ⊆ Dn × D is a closed subset, F ⊆ C is a
closed subset, and π1 denotes the projection to Dn, then π1(C − F ) is a Boolean
combination of closed sets. We show this by induction on dim(C). Note that we
can immediately reduce to the case where C is irreducible.

Let C1 = cl(π1C). Then C1 is irreducible, and for some proper closed H ⊆
C1, π1C ⊇ C1 −H.

Let C0 = {x ∈ Dn : ∀y.(x, y) ∈ C}, and F0 = {x ∈ Dn : ∀y.(x, y) ∈ F}.
Then C0, F0 are closed and C0 ⊆ C1. The case C0 = C1 is trivial, since then
π1(C − F ) = C0 − F0.

Let F1 = cl(π1F ). If F1 is a proper subset of C1, then so is F2 = F1 ∪H, and
(F2 ×D) ∩ C is a proper subset of C, and hence has smaller dimension. Thus by
induction π1((F2 ×D) ∩C − F ) is a Boolean combination of closed sets. Hence so
is π1(C − F ) = π1((F2 ×D) ∩C − F ) ∪ (C1 − F2).

The remaining case is C1 = F1, C0 6= F1. In this case we claim that C = F .
Since C is irreducible, it suffices to show that dim(C) = dim(F ). In fact dim(C) =
dim(C1) and dim(F ) = dim(F1). This follows from the characterization of dim(F )
in Lemma 2.6. (If π is a generically surjective map on F1 with a finite fiber, then
π1π is the same for F.)

Corollary 2.7. D is strongly minimal.

Proof. Let E ⊆ Dn × D be a definable set. We must show that E(a) is finite or
co-finite, with a uniform bound for all a ∈ Dn. We may take E = C − F , with
C,F closed. If C(a) is finite, then E(a) is finite, with the same bound. The result
is immediate from (Z2) applied to C and to F .
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3. Model theoretic preliminaries

We list here some basic facts concerning first-order structures. However in certain
sections we will require more familiarity with these notions than can probably be
attained here. We refer the reader to [FJ] or [CK] for the general notions, and to
[Pi1] for results connected with Morley’s dimension for definable sets.

Structures and maps. A structure is a set M together with a collection of subsets
of Mn for each n (the “0-definable sets”) closed under intersections, complements,
projections and their inverses, and containing the diagonals. We assume that the
collection of 0-definable sets is indexed in some way, as {Ri : i ∈ I}; the indexing is
called the language; we also write Ri(M) for Ri as a subset of Mn. One can think
of Ri(M) as the set of M -points of the definable set Ri, as one does for varieties.
A map f : M → N is one preserving the Ri, so that (x1, . . . , xn) ∈ Ri(M) iff
(fx1, . . . , fxn) ∈ Ri(N). We always write f(x1, . . . , xn) for (fx1, . . . , fxn).

A definable subset of Mn is one of the form C(a) = {y : (a, y) ∈ C} ⊆Mn, where
C is a 0-definable subset of Mk+n and a ∈ Mk. We say that a set is A-definable
if it has the form C(a) for some a from A. An elementary substructure of M is a
subset N of M with the following property: if C is a nonempty N -definable set,
then C ∩N 6= ∅. We then consider N as a structure whose 0-definable sets are the
restrictions to N of the 0-definable sets in M .

If A ⊆ M and c ∈ Mk, the type of c over A, tp(c/A), is the collection of all
A-definable sets containing c.

Because of the quantifier elimination proved for Zariski structures, a definable
set is just a constructible set in this context (a Boolean combination of closed sets).

Universal domain. A basic theorem of model theory states that every structure
M is an elementary substructure of a larger structure M∗ with the following prop-
erties:

3.1. (compactness) Let C be a countable collection of definable subsets of M∗,
with the finite intersection property. Then the intersection of all members of C is
nonempty.

3.2. (homogeneity) Let f : A1 → A2 be a bijective map between countable
subsets of M∗. Then f extends to an automorphism of M∗.

In [FJ] such a structure is called an enlargement of M . “Countable” in 3.1, 3.2
can be replaced with various other notions of “smallness”, such as “of cardinality
smaller than a given cardinal κ”. This involves considerations that are irrelevant
here, though strictly speaking they may be needed if one starts with an uncountable
Zariski geometry. See [CK] for this, and also for certain uniqueness statements (on
saturated models).

It is useful to state a version of 3.2 using types:
3.2′. Let A be countable. If b, c are elements of M∗ with the same type over A,

then there exists an automorphism of M∗ fixing A and taking b to c.
Thus a type over A corresponds to an orbit of Aut(M∗/A). Sometimes we will

confound the distinction. We say that a, b are conjugate over A if they have the
same type over A.

Let A0 be a countable set. It follows from 3.1 that the following properties of
a set A are equivalent: (i) A is invariant under Aut(M∗/A0). (ii) A is a union of
complete types over A0. We call A A0-normal in this case.
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When M is stable in the sense of Shelah, in particular when the structure has
finite Morley rank in the sense to be explained below, the homogeneity in 3.2 can
be extended. We will use this on one isolated occasion.

Definition. Let B be a countable subset of M∗. A ⊆ M∗ is B-normal if A is
invariant under Aut(M∗/B).

3.3. If A1, A2 are B-normal, B is countable, and f : (B ∪ A1) → (B ∪ A2) is a
map fixing B, then f extends to an automorphism of M∗.

Convention A. All elements a, b, . . . mentioned without qualification are assumed
to belong to M∗ (not necessarily M). All sets of elements A,B, . . . are assumed to
be countable, or normal over some countable set.

Imaginary elements. One can also consider many-sorted structures, which con-
sist of a number of sets Mi (called “sorts”) together with a collection of subsets of
their various Cartesian products, with the same closure properties. We will use a
canonical many-sorted structure associated with a given structure M . It consists
of M together with additional “imaginary sorts”, all implicitly contained in M .

Definition. A structure N is interpretable in a structure M if there exists a 0-
definable subset U of Mn and a surjective map j : U → N such that for any
0-definable D ⊆ Nk, j−1(D) is a 0-definable subset of Uk ⊆ (Mn)k.

If N is interpretable in M , then any statement concerning definable subsets of N
can be converted to one about M . In particular j−1(=) is a 0-definable equivalence
E relation on U , and N can be identified with a structure whose universe is U/E.
This leads to the formation of Shelah’s many-sorted structure M eq, containing a
copy of each structure interpretable in M (with the maximal possible set of 0-
definable relations).

Suppose D is a 0-definable subset of Mn for some n, and E is a 0-definable
subset of Mn+n, which is an equivalence relation on D. Then we call s = (D,E) a
sort, and we let Ms = D/E. We have a map πs : D → Ms. We consider Ms as a
structure whose 0-definable sets are those subsets X of Mk

s whose pullback by πs is
0-definable in M . This construction is functorial; if M∗ is an elementary extension
of M , then M∗s is an elementary extension of Ms in the natural way.

We will need to work in order to get some theory of imaginaries in the Zariski
context. In the constructible category however no difficulty arises. In particular
the notion of dimension defined below applies also to imaginary sorts.

Convention B. When elements or sets are introduced without qualification, they
are always assumed to lie in M∗s for some imaginary sort S (and not necessarily in
M).

Algebraic and definable closure. A definable function is a function whose graph
is a definable set. A subset of M∗ (or M∗ eq) is definably closed if it is closed under
the definable functions (in any number of variables). We write dcl(A) for the
definable closure of A. If M is an algebraically closed field, A ⊆M , then dcl(A) is
the smallest perfect subfield of M containing A.

3.4. a ∈ dcl(A) iff a is fixed by Aut(M∗/A).

Proof. Suppose a is fixed by Aut(M∗/A). Then by 3.2′ there is no a′ 6= a with
the same type over A. Hence the type of a over A, together with the definable
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set {x : x 6= a}, has empty intersection. By 3.1 some finite subset has empty
intersection. It follows that {a} is a finite intersection of A-definable sets, so it
is A-definable. Say {a} = C(a1, . . . , ak), with C a 0-definable set and a1, . . . , ak
from A. Let E = {(x1, . . . , xk): there exists a unique y with (x1, . . . , xk, y) ∈ C}.
Let C′ = {(x1, . . . , xk, y) : (x1, . . . , xk, y) ∈ C and (x1, . . . , xk) ∈ E}. Then C′ is
definable and is the graph of a definable function f , and f(a1, . . . , ak) = a.

3.4 gives a very useful Galois theory between definably closed sets, and certain
subgroups of Aut(M∗).

We say that a ∈ acl(A) if a ∈ C for some finite, A-definable set C. A is
algebraically closed if A = acl(A). Similarly to 3.4 one can show:

3.5. a ∈ dcl(A) iff the orbit of a under Aut(M∗/A) is finite.

Dimension and rank. The notion of dimension can be defined in the constructible
category; it is customarily called Morley rank. One defines recursively the class of
definable sets of Morley rank at least n. For n = 0, it is the class of all nonempty
definable sets. A definable set D has rank at least n+ 1 iff for all m,D contains m
pairwise disjoint subsets of rank at least n.

We say that D has Morley rank n if it has rank at least n, but not at least
n+ 1. We write rk(D) = n. We also write rk(a/B) = n to mean that a lies in some
B-definable set of rank n, but not of any smaller rank. We say then that the type
of a over B has rank n.

Conventionally, rk(∅) = −∞.
If we begin with a Zariski structure X , it can easily be shown that the Morley

rank of a definable set E of Xk is the dimension of the closure of E in Xk (for
example this follows from 2.6).

rk(a/B) is the dimension of the locus of a over B. In an algebraically closed
field, it equals the transcendence degree of the field generated by B and a, over
that generated by B.

3.6. Suppose M has Morley rank 1, and let Ms be an imaginary sort (possibly
Mn). Then Ms has finite Morley rank. Moreover, for all A, a, b:

(a) (additivity) rk(ab/A) = rk(b/A) + rk(a/A ∪ {b}).
(b) rk(a/A ∪ {b}) ≤ rk(a/A).
(c) rk(a/A) = 0 iff a ∈ acl(A).

Independence. We say that a1, . . . , an are independent over A if

rk(a1 · · ·an/A) =
∑
i

rk(ai/A).

Note that the notions of independence over A, and over acl(A), are the same.
We also say that a, b are free over A when there are just two elements. If M∗ is

an algebraically closed field, A a subfield, this is the same as saying that the fields
A(a), A(b) are free over A.

The following comes from 3.6:
3.7. (a) If a is free from b over A, and from c over A ∪ {b}, then a is free from

(b, c) over A.
(b) If a1, . . . , an are independent over A, then so is any permutation.
Shelah’s “finite equivalence relation theorem” can be stated as follows, using

Convention B.
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12 EHUD HRUSHOVSKI AND BORIS ZILBER

3.8. Suppose A = acl(A) ⊆ B, tp(a/A) = tp(b/A), and each of a, b are free from
B over A. Then tp(a/B) = tp(b/B).

If p is a type over a set A and A ⊆ B, a generic (over B) realization of p is any
element a whose type over A is p, and such that a is free from B over A. Thus 3.8
states that if A is algebraically closed, then any two generic realizations of p are
conjugate. We will also say that a1, . . . , an are mutually generic over A if each is
generic, and they are independent over A.

Families. In the constructible category the deep problems associated with moduli
varieties do not exist. Let Y be a definable set. A family of definable subsets of
Y is a definable subset C of P × Y , where P is a definable set, such that C(a)
has constant Morley rank k (a ∈ P ). Write Z ≡k Z ′ iff the symmetric difference
of Z,Z ′ has Morley rank smaller than k, and define an equivalence relation on
P : a ≡ b iff C(a) ≡k C(b). This equivalence relation is definable; thus P ∗ = P/ ≡
can be viewed as a definable set (of imaginary elements). The dimension of the
family is the Morley rank P ∗.

3.9. There exists C∗ ⊆ P ∗ × Y such that for a ∈ P , C(a) ≡k C∗(a/ ≡).
Thus any given family can be replaced with a normal one, for which ≡ is the

identity. (Cf. [HH], normalization theorem.)

Z-structures.
3.10. Let M be a structure of finite Morley rank, together with a distinguished

generation family of definable sets, referred to as closed. We call M a Z-structure
if (Z0) holds.

By assumption, every definable set is a Boolean combination of closed sets; it
follows that cl(cl(X)−X) has dimension < dim(cl(X)). (Z1) follows automatically
from the quantifier elimination condition on a structure (closure under projections).

From this point of view, a Zariski geometry is a strongly minimal Z-structure
satisfying the dimension theorem (Z3). The condition (Z3) is the only one without a
natural model-theoretic meaning. Indeed the interpretation of the field was achieved
in this framework in 1989 for complete Zariski geometries, but was neglected in part
because condition (Z3) appeared too restrictive.

4. Specializations

In this section we introduce the language of specializations, and prove their
basic properties in Zariski geometries. This language is entirely equivalent to the
description in terms of closed sets, but for many purposes more convenient to work
with.

We regard the Zariski geometry D as a first-order structure; the relations are the
closed subsets of Dn. We will not carefully distinguish between the closed subset
F ⊆ Dn and the predicate naming it in the language. We observe that the Zariski
structure is carried over into elementary extensions (see [CK]).

Definition. Let D∗ be an elementary extension of D. Let F be a closed subset of
Dn. Then F (D∗) is a subset of D∗n. Sets of this form are called 0-closed sets. If A
is a subset of D∗, an A-closed set in Dn is one of the form F (a), where F ⊆ Dm×Dn

is a 0-closed set, and a = (a1, . . . , am) ∈ Am.

Definition. The locus of c over A is the smallest A-closed set containing a. The
rank of c over A is the dimension of the locus of c over A.
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Proposition 4.1. D∗ together with the collection of closed subsets of D∗n forms a
Zariski geometry. It is complete if D is complete.

Before proving the proposition we make some remarks. Since D is strongly
minimal, so is D∗, and we may use Morley rank. The only difficulty is to verify
that every closed set is a finite union of closed irreducible sets, and that a proper
closed subset of a closed irreducible set has smaller Morley rank.

For any a, the topology determined by the a-closed sets is easily seen to be
Noetherian. (If a ∈ D∗n and Fi(a) is a family of a-closed sets in D∗m, then Fi can
be viewed as a subset of Dn+m, and some finite intersection K of the Fi is contained
in every Fj ; then K(a) is a finite intersection of the Fi(a) and is contained in every
Fj(a).) We call it the a-topology. The union of all the a-topologies will be called
the absolute topology (though we do not yet know it is a topology).

Lemma 4.2. Let D1 be a closed, irreducible subset of Dk, and let E be a closed
irreducible subset of D1 × Dm. Then there exists a proper closed subset F1 of
D1 such that for every a ∈ D1 − F1, every component of E(a) has dimension
≥ dim(E)− dim(D1).

Proof. The case D1 = Dk is immediate from 2.5, with F1 = ∅. In general let
r = dim(D1). By 2.1 and strong minimality, there exists a projection π : Dk → Dr

and a proper closed subset F1 of D1 such that π is finite-to-one on D1 − F1. So
we may think of Dk as Dr × Dl. Let a ∈ D1 − F1 and write a = (ar, al). Then
E(a) = E(ar)(al) in the obvious sense. By the special case mentioned above,
every component U of E(ar) has dimension ≥ dim(E) − r. But by the property
of π, the projection of U to Dl is finite; since U is irreducible, it has one element,
namely al. Thus U = {al} × U(al). Evidently E(a) is covered by the sets U(al)
as U ranges through the components of E(ar); so every component of E(a) has
dimension ≥ dim(E)− r.

Remark 4.2′. Suppose

D1 can be covered by open sets G, such that each G

admits a map to some Dk with finite fibers.
(∗)

Then the conclusion (and proof) of 4.2 are valid for any a ∈ D1. It follows that if
(∗) holds for all closed sets, then so does the property

For all irreducible E, {a ∈ D1 : dimE(a′) ≥ t} is a relatively

closed subset of {a ∈ D1 : dimE(a′) ≥ 0}.
(#)

By Noether’s integral basis theorem, every variety has the property (∗). It appears
that (∗) follows for all ample Zariski geometries, using Theorem B, and hence that
(#) holds. But we have not been able to find a direct proof.

Lemma 4.3. Let C ⊆ D∗n be a closed set. Assume C is invariant under
Aut(D∗/A), where A is a finite set. Then C is an A-closed set.

Proof. Let a = (a1, . . . , am) enumerate A. Fix for a moment a point c of C.
Let C∗ be the smallest 0-closed set containing (a, c), and D1 the locus of a. Let
k = dim(D1), l = dim(C∗)−k. Let F1 be a subset of D1 as in 4.2. By 4.2, for every
D-closed set C′ and every a′ ∈ D1 −F1, either C∗(a′) ⊆ C′ or rk(C∗(a′)−C′) ≥ l.
Transferring this statement to D∗, for every closed set C′ and every a′ ∈ D1 − F1,
either C∗(a′) ⊆ C′ or rk(C∗(a′) − C′) ≥ l. Let a ∈ D1, rk(a/D) = k. We claim
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that C∗(a) ⊆ C. Suppose for contradiction that this is false, and let b ∈ C∗(a)−C,
rk(b/D, a) = l. Then rk(ab) = k+ l = dim(C∗). Thus (a, b) is a generic point of C∗,
hence is conjugate to (a, c) under Aut(D∗). However, c ∈ C; a contradiction. This
shows that C∗(a) ⊆ C. Moreover c ∈ C∗(a). Thus every point of C lies in some
A-closed set contained in C. By compactness, there is a finite number of A-closed
sets contained in C whose union is C. Thus C is A-closed.

Ziegler’s proof of 4.1. The referee has communicated to us a proof of 4.1 suggested
by Ziegler, much shorter than ours. We leave our proof in since the intermediate
claims seem to throw some light on the situation. We indicate however Ziegler’s
proof, with the flavor of order type ω2 rather than ω. One considers directly a
supposed strictly descending chainCi(a

∗
i ) of closed subsets ofD∗n. Say a∗i ∈ D∗m(i).

Then since D is an elementary submodel, for every M there exist ai ∈ Dm(i)

such that Ci(ai) is strictly descending, i ≤ M . However for a fixed sequence
Ci ⊆ Dn+m(i) one shows this is not the case. Indeed at each i either the number
of irreducible components of maximal dimension goes down, or the dimension goes
down. The only problem is to bound the number of irreducible components of the
new smaller dimension, in the latter case. This can be done because at each point
one is dealing with sets in a fixed number of families Ci(a).

Proof of 4.1. Claim 1. Let X be a definable set in D∗n. Then there exists a closed
set Y containing X , with rk(Y −X) < rk(X). If X is b-closed, so is Y .

Proof. We may write X = U(b), where U is a 0-definable set, and rk(U) =
rk(X) + rk(b). Let V be a 0-closed set containing U , such that rk(V −U) < rk(U).
Note that rk(V − U) ≥ rk(b) + rk((V − U)(b)). Let Y = V (b); then Y contains X ,
and

rk(Y −X) = rk((V − U)(b)) ≤ rk(V − U)− rk(b) < rk(U)− rk(b) = rk(X).

Call a closed set X weakly irreducible if there is no decomposition X = Y ∪ Z,
Y, Z closed of rank equal to rk(X), rk(Y ∩ Z) < rk(X).

Claim 2. Every closed set X is a finite union of closed, weakly irreducible sets,
of the same rank as X .

Proof. Let m be the Morley multiplicity of X . Then one cannot express X
as a union X = X1 ∪ · · · ∪ Xm+1, with Xi closed of rank equal to rk(X), and
rk(Xi ∩Xj) < rk(X). Let X = X1 ∪ · · · ∪Xl be a maximal such expression, l ≤ m.
Then it is clear that each Xi is weakly irreducible.

Claim 3. Let U be a closed subset of Dm+k, Y a definable subset of Dm, and
let V = {x ∈ Dk : for all y ∈ Y, (y, x) ∈ U}. Then V is an intersection of finitely
many sets U(yi), y1, . . . , ym ∈ Y . Moreover, if U and Y vary through a definable
family of definable sets, then the bound m can be chosen independent of Y .

Proof. The first assertion is immediate from the Noetherianity of D. For the
second, note that V = U(y1) ∩ · · · ∩ U(ym) iff U(y1) ∩ · · · ∩ U(ym) ∩ (Dk − V ) is
empty. Moreover, as Y and U vary through a definable family, so does V . Thus we
are reduced precisely to the following statement:

Let F be a definable family of definable subsets of Dk. There

exists an integer m such that if the intersection of finitely many

sets from F is empty, then already the intersection of m of

them is empty.

(∗)
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This is just the negation of Shelah’s finite cover property. It holds in strongly
minimal structures by [BL] and [Sh1]. Alternatively, one can prove it as follows in
this context. Let W range through intersections of finitely many of the sets in F .
By reverse induction on r ≤ k, show that if rk(W ) = r, there are only finitely many
possibilities for Mult(W ); and that if W =

⋂
iXi, then already the intersection of

some subfamily of bounded size has the same rank and multiplicity. The key point
is that one can uniformly bound multiplicities, i.e., for any Y ′ ⊆ Z × Dl, there
exists an integer k such that Y ′(b) always has multiplicity at most k.

Claim 4. If C is a-closed, a-irreducible, and weakly irreducible, then C is abso-
lutely irreducible.

Proof. Suppose otherwise. Then for some e, C = C′(e) ∪ F (e), where C′, F are
0-closed, and precisely one of the sets C′(e), F (e)—say the former—has rank equal
to rk(C). Let

Y = {e′ : C = C′(e′) ∪ F (e′), rk(C′(e′)) = rk(C), rk(F (e′)) < rk(C)}.
Then Y is an a-definable set.

Let C# = {x : for all e′ ∈ Y, x ∈ C′(e′)}. So C# is an intersection of closed
subsets of C of the form C − F (e′), rk(F (e′)) < rk(C). Now Claim 3 persists to
D∗, so C# is a finite intersection of sets of this form. Thus C# is closed, and
rk(C#) = rk(C). But clearly C# is a-definable. By 4.3, C# is a-closed. By a-
irreducibility of C,C = C#. Thus C′(e) = C, and F (e) = ∅. This shows that C is
irreducible.

It now follows easily, by induction on rank, that every closed set is a finite union
of closed irreducible sets.

Claim 5. Let U be irreducible and e-closed. Then U = U∗(e) for some irreducible
0-closed set U∗. Moreover rk(U∗) = rk(U) + rk(e).

Proof. Let U∗ be the smallest 0-closed set such that U = U∗(e). It is easy to see
that U is irreducible, and that e is a generic point of the appropriate projection of
U∗, so that the rank statement also holds.

Now if U ⊆ V are irreducible, rk(U) = rk(V ), say U, V are e-closed; then by
Claim 5, U = U∗(e), V = V ∗(e) with U∗, V ∗ irreducible, and rk(U∗) = rk(V ∗);
moreover one sees easily that U∗ ⊆ V ∗. Thus U∗ = V ∗, so U = V .

This finishes the proof of 4.1.

Convention. We thus work with D∗ instead of D. In other words, among the closed
sets, we are given also a class of 0-closed sets, such that every closed set has the
form C(a) for some a and some 0-closed set C, and such that D is saturated when
considered as a structure, with the class of 0-closed sets as the language.

Definition. Let M,N be models of Th(D), A ⊆ N . A map f : A → M is a
specialization if c ∈ Ak and P (c) for every 0-closed set P of k-tuples, then P (fc).

If A = (ai : i ∈ I), B = (bi : i ∈ I), and the indexing is understood, we write
A→ B if the map ai 7→ bi is a specialization.

A specialization is nothing more than a homomorphism, with respect to the
language whose atomic relations are the 0-closed sets.

The following proposition will not be used at all, but we include it as a com-
plement. It was important in the original treatment of the subject. Recall that a
Zariski geometry is complete if all projection maps are closed. In algebraic geometry,
one first proves the lemma on extensions of places, and deduces the completeness
of projective space; here we go in the opposite direction.
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Proposition 4.4 (Extensions of specializations lemma). Let D be a complete
Zariski geometry. Let M,N be two models of Th(D). Let A ⊆ B ⊆ N . Then
any specialization f : A→M extends to a specialization of N to M .

Proof. Given a ∈ N , we must extend f to A∪ {a}. Consider the smallest A-closed
set of which a is a member. This set has the form {x : (x, b) ∈ Q} where Q is
a 0-closed set and b is from A. By completeness, the projection P of Q to the
“second” coordinate is closed. Since f is a specialization, fb ∈ P , and since M is a
model of the theory of D, one can find a′ in N with (a′, fb) ∈ Q. Now one verifies
easily that this gives a specialization.

Definition. A closed set is single-dimensional (of pure dimension r) if all its com-
ponents have the same dimension (r).

Notation 4.5. (i) rk(a→ a′) = rk(a)− rk(a′).
(ii) a→b a

′ if ab→ a′b.
(iii) (ai : i ∈ I) → (a′i : i ∈ I) for infinite I if for every finite I0 ⊆ I, (ai : i ∈

I0)→ (a′i : i ∈ I0).

Notation 4.6. Let C ⊆ D1×D2, D1 irreducible. Let r = rk C(a) for generic a ∈ D1.
Let E0(C,D1) = {x ∈ D1 : rk(C(x)) > r}, E(C,D1) = cl(E0(C,D1)). Say that
b→ b′ is exceptional with respect to a if b′ ∈ E(C,D1), where D1 is the locus of b
and C is the locus of (b, a).

In the following proposition, we assume for the moment that D1, D2 are relatively
closed subsets of powers of D, i.e., open subsets of their closures and c is a tuple of
elements of D. Later we will define manifolds, and then D1 may be chosen to be
any manifold, and D2 a closed subset of any manifold (with the same proof). We
will use the following assumption:

(4.7A): C is a closed irreducible subset ofD1×D2;D1, D2 are also irreducible; D2

may be embedded as a closed subset of some Y , such that the dimension theorem
holds in D1 × Y m for all m.

Proposition 4.7. Assume the situation of (4.7A). Let a ∈ D1 be generic and
r = rk(C(a)) ≥ 0. Let (a, c) → (a′, c′), with a′ 6∈ E(C,D1). Let b′ ∈ C(a′). Then
there exists b ∈ C(a), rk(b/ac) = r, with (a, b, c)→ (a′, b′, c′).

Remark 4.8. Observe the following special case of 4.7. If (4.7A) holds, if C(a)
is finite of size m for generic a ∈ D1, if a′ ∈ D1, and if a′ 6∈ E(C,D1), then
|C(a′)| ≤ |C(a)|. In fact there exists a specialization extending a→ a′ and carrying
a subset of C(a) onto C(a′).

Lemma 4.9. Suppose D1 is irreducible, Ci ⊆ D1 × D2 (i = 1, 2) closed, with
C1 single-dimensional. Let r = dim(C1(a)) for generic a ∈ D1, and let E =
E(C1, D1). Suppose r ≥ 0. Suppose C1(a) ⊆ C2(a) for generic a ∈ D1. Then
C1 ⊆ C2 ∪ (E ×D2).

Proof. By single-dimensionality of C1 it suffices to show that every element of C1

of maximal rank is in C2 ∪ (E×D2). Let (a, b) be such an element of C1. If a ∈ E,
then (a, b) ∈ E × D2. If a 6∈ E, then rk(b/a) ≤ r, so rk(a, b) ≤ rk(a) + r. But
r ≥ 0 so for generic a′ ∈ D1 and b′ ∈ C1(a′), rk(a′, b′) = rk(D1)+r. By maximality
of rk(a, b), rk(a) = rk(D1), so a is a generic element of D1. Thus by assumption
(a, b) ∈ C2.
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Lemma 4.10. (a) Let C ⊆ D1 × D2, D1 irreducible of dimension r1, C of pure
dimension r + r1. Assume the dimension theorem holds in D1 × D2. Then for
a ∈ D1 −E(C,D1), C(a) is empty or of pure dimension r.

(b) Suppose F ⊆ D1×D2, G ⊆ D1×D3, D2 ⊆ E2, D3 ⊆ E3, and the dimension
theorem holds in D2

1 ×E2 ×E3. Let

H = {(a, b, c) : (a, b) ∈ F, (a, c) ∈ G}.

Then every component of H has dimension at least dim(F ) + dim(G)− dim(D1).

Proof. (a) We may assume C is irreducible. Note that for generic a ∈ D1, r1 +
rk(C(a)) = rk(a) + rk(C(a)) ≤ rk(C) = r + r1 so rk(C(a)) ≤ r. Hence for a ∈
D1 − E(C,D1) we also have rk(C(a)) ≤ r. But by the dimension theorem, every
nonempty component of C ∩ {a} × D2 has dimension ≥ (r + r1) − rk(D1) = r.
Equivalently every component of C(a) has dimension ≥ r. Thus C(a) is of pure
dimension r.

(b) Let H ′ = {(a, a, b, c) : (a, b) ∈ F, (a, c) ∈ G}. Then H ′ is isomorphic to H.
On the other hand H ′ can be viewed, within D2

1×E2×E3, as the intersection of the
diagonal ∆ = {(a, a, b, c) : a ∈ D1, b ∈ E2, c ∈ E3} with a closed set isomorphic to
F ×G. Since ∆ has codimension equal to dim(D1), the dimension theorem shows
that every component of H ′ has dimension at least dim(F )+dim(G)−dim(D1).

Lemma 4.11. Assume (4.7A), and that cl(π1C) = D1. Let a ∈ D1 be generic, r =
rk(C(a)). Let ai = (a, a∗i ) be a tuple containing a, and Ci ⊆ {(x, y, z) : (x, z) ∈ C}
a closed irreducible with C(a) =

⋃
iCi(ai). Let (a′, a′1, . . . , a

′
m) be a specialization

of (a, a1, . . . , am), a′ 6∈ E(C,D1). Then C(a′) =
⋃
iCi(a

′
i).

Proof. Let F0 be the locus of (a, a1, . . . , am),
F1,i the locus of (a, a1, . . . , am, bi), where bi is a generic point of Ci(ai),
F1 =

⋃
i F1,i, and

F ′2 = {(a, a1, . . . , am, b) : (a, a1, . . . , am) ∈ F0 and (a, b) ∈ C}.
Let F2 be the union of all components of F ′2 not contained in

{(x, x1, . . . , xm, y) : x ∈ E(C,D1)}.

Claim. F2 is single-dimensional.
Proof. Let (x, x1, . . . , xm, y) be a generic element of some component of F2.

Then x 6∈ E(C,D1). So rk(y/x) ≤ r. Thus rk(x, x1, . . . , xm, y) ≤ rk(F0) + r. On
the other hand we may apply the dimension theorem in D2

1 × Y f (where Y is from
(4.7A), and the locus of (x1, . . . , xm, y) is a closed subset of Y f ). Specifically, we
intersect F0×C within an appropriateD1-diagonal, to obtain a copy of F ′2. The D1-
diagonal is defined by the equality of two projections to D1, and has codimension
dim(D1). Thus every nonempty component of F ′2 has dimension greater than or
equal to rk(F0) + rk(C)− rk(D1) ≥ rk(F0) + r.

By assumption,

F1(a, a1, . . . , am) = F2(a, a1, . . . , am),

and (a′, a′1, . . . , a
′
m) 6∈ E(F2, F0). By 4.9 (and the fact that F1 ⊆ F2) we have

F1(a′, a′1, . . . , a
′
m) = F2(a′, a′1, . . . , a

′
m).

In other words C(a′) =
⋃
iCi(a

′
i).
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Proof of Proposition 4.7. Let C1 be the locus of (a, c), C∗ = {(x, z, y) : (x, z) ∈
C1, (x, y) ∈ C}. Let Ci (i = 1, . . . , d) be the irreducible components of C∗ satisfying
rk Ci(a, c) = r. By 4.3 (or the proof of 4.1, Claims 1 and 4) every component of
C(a) has dimension r; hence C(a) =

⋃
iCi(a, c). By 4.11, C(a′) =

⋃
iCi(a

′, c′); so
b′ ∈ Ci(a′, c′) for some i. Let b be a generic point of Ci(a, c). Since Ci is irreducible
and (a, c, b) is a generic point of Ci, (a, b, c)→ (a′, b′, c′).

Lemma 4.12. If rk(b→ b′) ≤ 1, then b→ b′ is nonexceptional with respect to any
a.

Proof. Let C be the locus of ba, A the locus of b, E = E(C,A). Then dim(E) ≤
dim(A)−2. For let b∗ be a generic point of E. Then b∗ ∈ E0(C,A), so dim(C(b∗)) ≥
dim(C(b)) + 1. Hence if a∗ has maximal rank in C(b∗), then rk(a∗b∗) ≥ dim(E) +
dimC(b) + 1. But a∗b∗ is not generic in C, so rk(a∗b∗) < dim(C) = dim(A) +
dimC(b). So dim(E) < dim(A)− 1. Since rk(b′) ≥ rk(b)− 1, b′ 6∈ E.

Lemma 4.13. Let a→ a′′; suppose a(1) 6= a(2), a′′(1) = a′′(2). Then there exists
a′, a→ a′ → a′′, a′(1) = a′(2), with rk(a→ a′) = 1.

Proof. Immediate from the dimension theorem. a′ is any generic point of the com-
ponent of the intersection of locus(a) with the diagonal x(1) = x(2) containing the
locus of a′′.

5. Elimination of imaginaries

In the present section we will define the notion of a “manifold” over a Zariski
geometry D. The goal is to obtain a large collection of universes in which the
dimension theorem remains true. (It is not true in an arbitrary closed set of Dn.)
We will first identify “special” imaginary sorts, where the dimension theorem holds
(5.1); then identify “regular subsets” of these, on which it perseveres (5.4); and
finally show such sets can be glued together (the key is 5.5, 5.10).

We will show that any structure interpretable inD is piecewise a manifold (“elim-
ination of imaginaries”). If it carries a definable group operation, one also has a
global result: Weil’s group chunk theorem, stating that a constructible group has
a unique manifold structure in this sense, is valid here. This is the basis for the
transition between the categories.

Definition. We define a special imaginary sort. Let H be a subgroup of Sym(n).
Let H act naturally on Dn. Let SH = Dn/H. Then SH is the special imaginary
sort corresponding to H.

Remark. If D is a rational curve over an algebraically closed field, the notion of a
D-manifold can be defined without introducing the new sorts; but if we start with
another curve, we will not otherwise get a sufficiently general notion.

The following is an unpublished result of Lascar and Pillay, in the strongly
minimal case. We state it in that case, but note that the proof given goes through
whenD is definable by a possible infinite set of formulas in some saturated structure,
and every definable subset meets D in a finite or cofinite set.

Lemma 5.1. Let D be a strongly minimal set, and suppose acl(∅) is infinite in
D. For any imaginary sort S there exists a partition of S into a finite number of
0-definable sets Xi, special sorts Si, and 0-definable injective maps fi : Xi → Si.
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Equivalently, for any imaginary element e there exists an element e′ of a special
sort, such that dcl(e) = dcl(e′).

Proof. We have e = (a1, . . . , an)/E for some a1, . . . , an ∈ D and some 0-definable
equivalence relation E. We may renumber so that a1, . . . , aj are in acl(e), but
the others are not. Choose the elements ai so that j is as large as possible. If
j < n, then aj+1 is not algebraic over e. Hence for all but finitely many elements
xj+1 of D there exist xj+2, . . . , xn such that e = (a1, . . . , aj , xj+1, . . . , xn)/E. In
particular there exists a′j+1 in acl(∅) ∩ D such that for some a′j+1, . . . , a

′
n, e =

(a1, . . . , aj, a
′
j+1, . . . , a

′
n)/E. But this contradicts the maximality of j. Hence j = n,

so each ai is algebraic over e.
Now let a = (a1, . . . , an) ∈ Dn, and let C be the set of all conjugates of a

over e. Clearly C has no proper conjugates over e, and (since e = a′/E for any
a′ ∈ C), e has no proper conjugates by automorphisms leaving C invariant. Thus
dcl(e) = dcl({C}).
C has some finite number m of elements. It can thus be viewed as a member of

the collection of m-element subsets of Dn. This collection can be identified with
the set of m-tuples of Dn, modulo the action of H = Sym(m) on (Dn)m. Now
regarding H as a subgroup of Sym(n ·m), we see that e is equivalent to an element
of the special sort SH .

Observe that if S, T are special sorts, then S × T may naturally be identified
with another special sort. We give each special sort a topology as follows. If
S = SH = Dn/H, let πH : Dn → H be the natural map. We call X ⊆ S closed if
π−1
H is closed in Dn.

The same definition could have been made for any sort Dn/E, where E is a
closed equivalence relation. However, the dimension theorem would not in general
hold in Dn/E. For example, suppose E is the equivalence relation identifying two
points on D; so the map D → D/E is generically 1-1, but has one fiber of size 2.
This contradicts Remark 4.8; tracing through the proof we see that the dimension
theorem fails in (D/E)×D2.

We show however that in the special sorts, the dimension theorem continues to
hold.

Lemma 5.2. Suppose D is a Zariski geometry, and let S be a special sort, of
dimension n. Let C1, C2 be closed irreducible subsets of S, dim(Ci) = di. Then
every component of C1 ∩C2 has dimension at least d1 + d2 − n.

Proof. Let S = SH = Dn/H, and let π = πH be the projection. Observe that π is
a closed map: if X is closed in Dn, then π−1πX =

⋃
σ∈H σX is closed, hence πX

is closed. Let C1, C2 be closed irreducible subsets of S, dim(Ci) = di, and let X
be a component of C1 ∩ C2. Let Di be a component of π−1Ci projecting onto Ci.
(Any component of maximal dimension will do.) If x ∈ C1 ∩C2, then x = πyi with
yi ∈ Di. Since πy1 = πy2 we have σy2 = y1 for some σ ∈ H, so y1 ∈ (D1 ∩ σD2).
Thus C1 ∩ C2 ⊆

⋃
σ π(D1 ∩ σD2). Let {Yi} be the connected components of the

sets D1 ∩ σD2, σ ∈ H. By the dimension theorem in Dn, each Yi has dimension
≥ d1 + d2 − n. It follows that πYi is connected, of dimension at least d1 + d2 − n.
Since C1 ∩ C2 is contained in

⋃
i πYi, the connected components of C1 ∩ C2 are

among the sets πYi; hence all have the appropriate dimension.

Write codimX Y for dim(X)− dim(Y ). Let ∆C denote the diagonal on C × C.
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Definition. Let C ⊆ S = Dn be a closed irreducible set of dimension k. A
point p ∈ C is regular on C if there exists a closed irreducible set G ⊆ S × S,
codimS×S(G) = dim(C), such that ∆C is the unique component of G ∩ (C × C)
passing through (p, p).

If C is any closed set in Dn, p is regular if p lies in a unique component of C,
whose dimension equals dim(C), and is regular on that component.

Let S be a special sort, π : Dn → S the defining projection, and let C be a
closed subset of S. A point p ∈ C is regular on C if p = πp∗ for some regular p∗ on
h−1C.

Remark. This appears closely related to the notion of local complete intersection
(l.c.i.) in algebraic geometry; see [Ha], 8.22, 8.23. If S is a smooth variety, and
if C is a closed subvariety and is l.c.i. at an open neighborhood of p, then ∆C

is l.c.i. at (p, p), and hence p is regular on C ([Ha], 8.22.2). The converse also
seems plausible. For our present purposes regularity is a technical notion capable
of yielding a sufficient supply of sets on which the dimension theorem is valid.

Lemma 5.3. Let S be a special sort, C a closed subset. Then the set of regular
points of C forms a dense open subset of C.

Proof. Since the projection π : Dn → S is a closed and open map, even on C,
we are reduced to the case S = Dn. The set of points of C lying on only one
component of C, of dimension equal to dim(C), is dense open, so we may assume
C is irreducible.

Claim. There exists a closed irreducible set G ⊆ S × S, codimS×S(G) =
codimS(C), such that ∆C is a component of G ∩ (C × C).

Proof. Let π : Dn → Dk be a projection, k = dim(C), such that π is finite-to-one
on a dense open subset C∗ of C. Let G be the inverse image of the diagonal of Dk

under the map (π, π). Then G is closed irreducible, of codimension k in Dn ×Dn.
Clearly ∆C ⊆ G ∩ (C × C). Moreover

dim(G ∩ (C∗ × C∗)) = dim{(x, y) ∈ C∗ : πx = πy} = dimC∗

since π is finite-to-one on C∗. Thus ∆C has the same dimension as G∩ (C∗ ×C∗).
On the other hand,

dim(∆C ∩ ((C × C)− (C∗ ∩ C∗))) = dim(C − C∗) < dim(∆C).

So ∆C is a component of G ∩ (C × C).
Let G be as in the claim, and let G∗ be the union of all components of G∩(C×C)

other than ∆C . Then dim(∆C ∩G∗) < dim(C), so ∆C −G∗ is a dense open subset
of ∆C , and π1(∆C −G∗) = {p : (p, p) ∈ (∆C − G∗)} is a dense open subset of C.
The set of regular points is the union over all such G of π1(∆C −G∗).

Lemma 5.4. Let Si be special sorts, Ci a closed irreducible subset of Si, and pi
a regular point of Ci. Let U, V be closed subsets of C =

∏
iCi, and let E be a

component of U ∩ V , passing through p = (p1, . . . , pn). Then

dim(E) ≥ dim(U) + dim(V )− dim(C).

Proof. Viewing S =
∏
i Si as a special sort Dn/H, it is easy to see that p is regular

on C. Let π : Dn → S be the defining map of S as a special sort, p = πp∗, with
p∗ regular on π−1C. p∗ lies on a unique component C∗ of π−1C, with dim(C∗) =
dim(C), and is regular on C∗. Let E∗ be a component of U∗ ∩ V ∗, where U∗, V ∗
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are components of π−1U, π−1V . Now U ∩ V is covered by the sets πE∗, and hence
the components of U ∩ V containing p are included among the sets πE∗, where
E∗ passes through some p∗ with p = πp∗. The action of H shows that all p∗ are
regular on π−1C, and hence all E∗ passing through a point p∗ satisfy the required
inequality, given the special case S = Dn. We are thus reduced to this case.

By the definition of a regular point, there exists a closed irreducible subset G of
S × S of codimension equal to dim(C), such that ∆C is the unique component of
G∩C2 passing through (p, p). Let E# be a component of G∩ (U × V ) containing
∆E . By the dimension theorem in S2,

dim(E#) ≥ dim(U × V )− codimS×S(G) = dim(U) + dim(V )− dim(C).

Now E# is contained in G ∩ C2 and passes through (p, p), hence is contained in
∆C . Thus E# ⊆ ∆U∩V ⊆ G ∩ (U × V ). It follows that E# is a component of
∆U∩V , and thus equal to ∆E . Hence

dim(E) = dim(∆E) = dim(E#) ≥ dim(U) + dim(V )− dim(C).

Definition. A subset U of a special sort is called regular if U is open in its closure
C, and every point of U is regular on C.

Lemma 5.5. Let U, V be irreducible regular subsets of special sorts, and let Γ be a
closed irreducible subset of U ×V . Assume Γ is the graph of a function g : U → V .
Then g is continuous: for any closed G ⊆ V , g−1G is closed in U .

Proof. Let F be an irreducible component of cl(g−1G). We will show that F ⊆
g−1G. It follows that g−1G = cl(g−1G) is closed.
g−1G is the projection to U of (U × G) ∩ Γ, so it is a constructible set. Hence

so is F ∩ g−1G. Now g−1G is contained in the union of all the components of
cl(g−1G) other than F , together with cl(F ∩ g−1G); hence cl(F ∩ g−1G) = F , so
there exists a closed set F ′ ⊆ F , dim(F ′) < dim(F ), such that F − F ′ ⊆ g−1G.
Since Γ is the graph of a function, dim((F ′ × V ) ∩ Γ) ≤ dim(F ′) < dim(F ). If
(a, b) ∈ (F × V ) ∩ Γ and a 6∈ F ′, then b = g(a) ∈ G, so (a, b) ∈ (U × G). Thus
every component of (F × V ) ∩ Γ not contained in (F × V ) ∩ Γ is contained in
(U ×G). But by the dimension theorem, all the components of (F × V ) ∩ Γ have
dimension at least dim(F ) + dim(V ) + dim(Γ)− dim(U × V ) = dim(F ). Hence all
the components are contained in U ×G, so (F × V )∩Γ ⊆ (U ×G). Thus if a ∈ F ,
then (a, g(a)) ∈ (U ×G), so a ∈ g−1G. This shows that F ⊆ g−1G.

Remark 5.6. The irreducibility assumption on Γ is necessary, even if g is a bijection.
For example, let a = (1 : 0 : 0), b = (0 : 1 : 0) in two-dimensional projective space
P 2.

Let L1, L3 be the lines defined by: x = 0, z = 0, respectively. Let U = P 2−{a, b}.
Consider the bijection f between P 2 − L1 − L3 and itself, of degree 2, given by:
(x : y : z)→ (z2 : xy : xz). Let Φ be the graph of f . The closure of Φ in (P 2)2 is

Φ∗ = L1 × a ∪ L3 × b ∪ a× L1 ∪ b× L3 ∪Φ.

Thus Φ∗ ∩ U2 = Φ. We may extend f to a bijection g on U , by the identity on
U ∩ (L1 ∪ L3).
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Manifolds and the many-sorted geometry. It is convenient to consider many-
sorted Zariski geometries. These consist of a collection of “sorts” Di, with “pro-
jection maps” Di → Dj for various i, j. One assumes that if Di, Dj are sorts, then
so is Di × Dj, and the two natural projections are among the given maps. The
structure consists of a topology on each sort, such that the obvious parallels of
(Z0), (Z1), and 2.5 hold. We assume the existence of a “fundamental sort” D, such
that for every closed set F (in any sort) there exist n and a closed set C ⊆ Dn×F
separating points on a dense open subset of F . (Z2) is assumed to hold for closed
subsets of Di ×D, for any sort Di.

We now define a D-manifold. This is intended to be a topological space X ,
modelled locally on regular subsets of special sorts of D. We admit only connected
manifolds.

Definition. Let D be a Zariski geometry. By a D-manifold we will mean a set X
and a finite number of injective maps gi : Ui → X , such that:

(i)
⋃
i giUi = X ,

(ii) each Ui is an irreducible regular subset of some special sort,
(iii) for each i, j, {(x, y) ∈ Ui × Uj : gix = gjy} is a closed irreducible subset of

Ui × Uj , projecting onto a nonempty open subset of Ui and of Uj .

If X is a manifold, we obtain a topology on X , namely the collection of all sets
W ⊆ X such that g−1

i W is open in Ui for each i. By (iii) and 5.5, each gi is then
a homeomorphism between Ui and giUi. One sees easily that with this topology
X is an irreducible Noetherian space, of the same dimension as any of the sets Ui.
Moreover the dimension theorem holds in X .

If X,X ′ are manifolds, there is a natural manifold structure on X ×X ′ (covered
by the sets Ui × Uj). This gives a topology on X × X ′. In particular we get a
topology on Xn for each n, and more generally on all products of manifolds. It is
easy to verify that the collection of all manifolds, topologized in this way, forms a
many-sorted Zariski geometry.

Definition. Let X1, X2 be manifolds. A map α : X1 → X2 is a morphism if the
graph of α is closed irreducible in X1 ×X2.

Remark. This should not be confused with the natural notion of a homomorphism
of induced Zariski structures; we refer to the latter as a specialization.

Lemma 5.7. Let X1, X2 be manifolds, and let {Ui}, {Vj} be open covers of X1, X2

respectively. Let a map α : X1 → X2 be given. Then the following are equivalent:

(i) α is a morphism.
(ii) For each j, α−1Vj is open in X1, and the restriction of α to α−1Vj is a mor-

phism.
(iii) For each i, α|Ui is a morphism.

Proof. (i)→(iii) and (i)→(ii) are clear. We show that (iii)→(i); applying this to the
cover {α−1Vj}, (ii)→(i) also follows. To show that (iii)→(i), note that the graph Γ
of α is the union over i of the graph Γi of α|Ui. Hence it is closed. If Γ is the union
of two closed sets X,X ′, then Γi ⊆ X or Γi ⊆ X ′, by irreducibility of Γi. But Γi is
dense in Γ, so Γ = X or Γ = X ′.

Lemma 5.8. Let U, V be two manifolds, f : U → V a morphism. Then f is
continuous.
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Proof. By 5.5 and 5.7.

Lemma 5.9. If fi : Ui → Vi are morphisms (i = 1, 2), then so is f : U1 × U2 →
V1 × V2 defined by f(u1, u2) = (v1, v2).

Proof. Clear.

Lemma 5.10. The composition of two morphisms is a morphism.

Proof. Let f : U → V, g : V →W be morphisms. Then the maps (f, 1) : U ×W →
V ×W given by (f, 1)(u,w) = (fu,w) and (g, 1) : V ×W → W ×W given by
(g, 1)(v, w) = (gv, w) are both morphisms. Hence they are continuous, so their
composition (gf, 1) is continuous. But the inverse image of the diagonal on W 2

under (gf, 1) is just the graph Γ of gf . Thus this graph is closed. Let F,G be the
graphs of f, g. Then Γ is the projection to U ×W of (F ×W ) ∩ (U × G). Now
this intersection has a unique component of dimension ≥ dim(U), since it defines a
function from U to W and U is irreducible. But by the dimension theorem, every
component has dimension ≥ dim(U). Hence (F ×W )∩ (U ×G) is irreducible, and
consequently so is the continuous image Γ.

The following proof is adopted from [Hr2]. It is convenient here to drop the
requirement that manifolds be connected (i.e., that the set in (iii) of the definition
of manifold be nonempty). However the remark immediately following the proof
will restore the situation.

Lemma 5.11. Let G be a definable group in a Zariski geometry D. Then G may
be endowed with a manifold structure, in such a way that multiplication G2 → G
and inversion G→ G are morphisms.

Proof. This is similar to [W]. We first find a definable map g0 : V0 → G, where
V0 is a regular subset of some special sort, g0 is injective, and g0V0 has the same
Morley rank and degree as G. We may take g0 to be the identity. By reducing V0

further, we may assume

There exist morphisms m : M0 → V0 and n : V1 → V0, where

M0, V1 are dense open subsets of V 2
0 and V0, respectively, and

m,n coincide with the group multiplication and inversion on

their domains.

(∗)

Let V2 be a dense open subset of V0 such that for x ∈ V1, for any y generic to
x, (y, x) ∈M0 and (y−1, yx) ∈M0. Let V = {x : x ∈ V2 &x−1 ∈ V2}, M = M0∩V 3.
We have:

(i) M is dense open in V × V , m : M → V is a morphism, and m(x, y) = xy for
(x, y) ∈M .

(ii) For s ∈ V , for generic x, (x, s) ∈M and (x−1, xs) ∈M .
(iii) V = V −1, and inversion is a morphism on V .

Since V is a regular subset of some special sort, we may model the manifold G
on V . Let r = dim(G); let a0, . . . , ar be mutually generic elements of G. Then
any element of G lies in aiV for some i. Let hi(v) = aiv. Then the maps hi
cover G. The verification that G attains a manifold structure in this way, and that
multiplication and inversion are morphisms, all reduce to the following claim.
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Claim. Let a, b ∈ G. Then H1 = {(x, y) : axby ∈ V } is open in V × V , and the
map (x, y) 7→ axby is a morphism H1 → V .

Proof. Write b = b1b2, where b1, b2 ∈ V . (In a stable group any element can be
written as the product of two realizations of the generic type.) Suppose ax0b1b2y0 ∈
V . Let c be an element generic to everything. So (ca, x0) ∈ M , (cax0, b1) ∈ M ,
(cax0b1, b2) ∈M , and (cax0b1b2, y0) ∈M . (Each time because the first coordinate
is generic over the second.) Moreover by (ii) applied to ax0b1b2y0 (an element of
V ), (c−1, cax0b1b2y0) ∈M . Let

H2 = {(x, y) ∈ V : (ca, x) ∈M, (m(ca, x), b1) ∈M,

(m(m(ca, x), b1), b2) ∈M,

(m(m(m(ca, x), b1), b2), y) ∈M,

and (c−1,m(m(m(m(ca, x), b1), b2), y)) ∈M}.

Then we have shown that (x0, y0) ∈ H2; H2 is open, and H2 ⊆ H1; and axby =
m((c−1,m(m(m(m(ca, x), b1), b2), y))) for (x, y) ∈ H2. As openness and morphism-
hood are local, this proves the claim.

Remark 5.12. (a) If G is a connected group (i.e., has no definable subgroups of
finite index), then the manifold structure on G must be irreducible. For G acts
by translation on the set X of its irreducible components. Since X is finite, the
subgroup G0 = {g ∈ G : gC = C for all C ∈ X} has finite index in G; it is also
clear that G0 is definable. Hence G0 = G. Thus gC = C for any g ∈ G,C ∈ X : so
C = GC = G whenever C 6= ∅.

(b) The manifold structure on G is unique. For suppose G1, G2 are two manifold
structures on the group G. We assume for convenience that G is connected. The
identity is a definable group isomorphism h : G1 → G2. Since it is a subgroup of
G1 ×G2, it must be closed (since it is dense open in its closure). As in (a) we see
it must be irreducible. Thus h is an isomorphism of manifolds.

(c) Infinite definable fields are automatically connected ([Ma]), additively and
multiplicatively.

Now let F be a definable field. Applying 5.11 to the additive group structure of
F , we may take F to have a manifold structure, so that the graph of addition is
closed.

Lemma 5.13. Let F be a manifold carrying a definable field structure. Assume
addition is a morphism from F 2 to F . Then so is multiplication.

Proof. There exists a dense open subset U of F 3, and a closed subset M of F 3, such
that M agrees on U with the graph of multiplication. (Any definable subset has
this property.) We may choose M irreducible; in particular no component of M is
contained in the complement of U . So it is not the case that for generic (x, y) ∈ F 2

there exists z with (x, y, z) ∈ M and (x, y, z) 6∈ U . Thus for generic (x, y) ∈ F 2

there exists a unique z such that (x, y, z) ∈M , namely z = xy. Let U2 be an open
subset of F 2 such that if (x, y) ∈ U2, then (x, y, xy) ∈ M , and there is no z 6= xy
with (x, y, z) ∈ M . Since M ⊆ F 3 is closed, and the graph of multiplication on
U2 × F coincides with M , multiplication is a morphism U2 → F .

Given c = (c1, c2) ∈ F 2, let U2 − c = {(x, y) ∈ F 2 : (x + c1, y + c2) ∈ U2}. Note
that F 2 is covered by finitely many sets U2 − c (in fact by 2 dim(F ) + 1 such sets).
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Claim. For any c ∈ F , {(x, y) : cx = y} is closed.
Proof. A definable subgroup of F × F is automatically closed, since it is dense

open in its closure.
Hence multiplication by a generic element is a morphism. Let c = (c1, c2) ∈ F 2.

Let f : (U2 − c)→ F be defined by f(x, y) = (x+ c1)(y+ c2). f is the composition
of the map (x, y) → (x + c1, y + c2) with the multiplication map U2 → F . Both
these maps are morphisms; hence by 5.10, so is f .

Let a, b ∈ F be arbitrary. Then ab = (a + c1)(b + c2) − c1b − c2a − c1c2 =
f(a, b)− c1b− c2a− c1c2. Using 5.9, 5.10, we see that multiplication is a morphism
on (U − c). Since morphismhood is local, multiplication is a morphism.

Definition. a→ a′ is a regular specialization if the point a′ is regular on the locus
of a.

A good specialization is defined recursively as follows. Regular specializations
are good. Let a = (a1, a2, a3), a′ = (a′1, a

′
2, a
′
3), a→ a′. Suppose:

(i) (a1, a2)→ (a′1, a
′
2) is good.

(ii) a1 → a′1 is an isomorphism.
(iii) a3 ∈ acl(a1).

Then a→ a′ is good.

Lemma 5.14. Let a→ a′ be a good specialization of rank ≤ 1. Then any special-
izations ab → a′b′, ac → a′c′ can be amalgamated: there exist b∗, c∗ independent
over a, tp(b∗/a) = tp(b/a), tp(c∗/a) = tp(c/a), ab∗c∗ → a′b′c′.

Proof. If a→ a′ is regular this is immediate from 4.7: Let D1 be the set of regular
points on the locus of a; since a→ a′ is regular, a′ ∈ D1. The dimension theorem
is valid in D2

1 × Dm, by 5.4, and a′ 6∈ E(C,D1) by 4.13. Let D2 be the locus
of b, and C the locus of (a, b) in D1 × D2. By 4.7, one can find b∗ in C(a) with
rk(b∗/ac) = dimC(a), and in particular rk(b∗/a) = rk(b/a), and b∗ is independent
from c over a, such that ab∗c → a′b′c′. Let c∗ = c. Since C(a) is a-irreducible,
tp(b∗/a) = tp(b/a).

Now suppose a → a′ is as in the definition of “good”, and the lemma holds
for (a1, a2) → (a′1, a

′
2). Amalgamating over (a1, a2) → (a′1, a

′
2), there exist b∗, a∗3

such that tp(b∗a∗3/a1a2) = tp(ba3/a1a2), b∗a∗3 is independent from c over a1a2, and
a1a2a

∗
3b
∗a3c → a′1a

′
2a
′
3b
′a′3c

′. Now (a1a3a
∗
3) → (a′1a

′
3a
′
3) is a rank-0 specialization,

by (ii) and (iii), so it is an isomorphism. Thus a3 = a∗3, so ab∗c → a′b′c′ as
required.

Lemma 5.15. Let (ai : i ∈ I) be independent over b and indiscernible over b, I
infinite. Suppose (a′i : i ∈ I) is indiscernible over b′, and aib → a′ib

′ for each i.
Further suppose rk(b→ b′) ≤ 1 and b→ b′ is good. Then (bai : i ∈ I)→ (b′a′i : i ∈
I).

Proof. By 5.14 and induction, there exist a∗i independent over b, tp(a∗i /b) =
tp(ai/b), such that (b, a∗1, a

∗
2, . . . )→ (b′, a′1, a

′
2, . . . ). There are only infinitely many

types over acl(b) extending tp(ai/b); hence for some infinite I, (b, a∗i )i∈I is indis-
cernible over b, and so has the same type as (b, ai)i∈I . Thus (b, ai)i∈I → (b′, a′i)i∈I ,
and the lemma follows using indiscernibility.
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6. Interpreting the field

6.1. In this section we will interpret a field F in the Zarisk structureD. We will work
in the category of definable sets and maps, rather than the finer category of closed
sets; the Zariski structure will enter only through the notion of a specialization.
We first describe the proof in general terms.

Suppose first D is in fact the affine line over an algebraically closed field K, and
consider the task of recognizing the multiplicative group, given the Zariski structure.
Let F be a family of curves on D2, all passing through the point p = (0, 0). Assume
each curve C in F is the graph of a function, smooth at (0, 0). Then we may view
Ci ∈ F as coding the slope σi of Ci at p. The composition C1 ◦C−1

2 will have slope
σ1/σ2. Thus in this case we will interpret a copy of the multiplicative group if we
could find the relation of tangency of two curves at a point p. This can be done as
follows: we say two curves C1, C2 in a family are tangent at p if there exist generic
curves C∗i in the family meeting at two distinct points q, q′, and a specialization
carrying C∗i to Ci and taking both q and q′ to the point p.

The idea above can in fact be carried out, even if the curves Ci are not the graphs
of rational functions. As observed by Evgenia Rabinovich, the group obtained in
this way is not always the multiplicative group; the reason is that all our curves
may have the same slope at q0, in which case our process will discern the second (or
higher) derivative. We do not concern ourselves with the nature of the group, and
write it additively, as (A,+, 0). (The group operation will be differentiated again,
and the result then will be the additive group at all events.)

Next suppose D is a curve over an algebraically closed field K, but not necessar-
ily rational. Then there exists a finite-to-finite correspondence α between D and
K. We find a family F of curves on D2, all passing through a point p0 ∈ D2. Via
the correspondence α, F gives rise to a family F ′ of curves on K2, passing through
the point q0;C corresponds to any component C′ of the curve α ◦ C ◦ α−1. This
correspondence is also finite-to-finite. We are thus presented with the task of rec-
ognizing a group structure transformed by a finite-to-finite correspondence. The
machinery for this is already available, and will be explained in §6.2.

Once we have an Abelian group H, we can repeat the process, with more infor-
mation at our disposal. Given a family of functions H → H, we can both add them
(pointwise) and compose them. The two operations together, viewed as “acting on
the tangent space” as above will give a field structure.

Certain technical difficulties present themselves when the above is carried out;
in general it is not clear why the notion of tangency as defined above will not
be a degenerate notion (e.g. C1 ◦ C−1

2 is tangent to C3 ◦ C−1
4 iff two of the four

curves are equal). We show this is not the case by exploiting certain symmetries of
the situation, and showing in effect that any such degeneracy would introduce an
asymmetry. The need to keep track of these symmetries led us to a more technical
presentation than the above sketch suggests.

6.2. We now describe the means of recognizing a group structure across a finite-
to-finite correspondence. Suppose G is a group acting on a set X transitively, and
let there be given finite-to-finite correspondences α1 ⊆ G × G′, α2 ⊆ X × X ′,
α3 ⊆ X × X ′′. Let M = {(g, x, y) : gx = y} be the graph of the group action,
and let M ′ ⊆ G′ ×X ′ ×X ′′ be its transform, i.e., any component of {(g′, x′, y′) ∈
G′ ×X ′ ×X ′′: for some (g, x, y) ∈M, (g, g′) ∈ α1, (x, x

′) ∈ α2, (y, y
′) ∈ α3}. Then

M ′ is called a pseudo-action. Note that any purely dependence-theoretic statement
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true of M will also be true of M ′. It turns out that the simplest such statement
suffices to determine M ′ as a pseudo-action. The following result is from [Hr5]; see
also [EH] and [B].

For the rest of this section we assume D is a strongly minimal set, or just a
minimal set within some saturated structure, in which dcl(∅) = acl(∅) is infinite. In
other words for every definable subset H of the ambient structure, with parameters,
H∩D orD−H are finite. (The strongly minimal case will suffice for the proofs of the
theorems stated in this paper, but no further work is involved in making this weaker
assumption. In some of the references, stability of the ambient structure is assumed,
and the reader may feel more comfortable in this intermediate environment.)

Unless otherwise stated all elements a, b, c, etc. are elements of Dn for some n.

Theorem 6.1. Let (b1, a2, a3) be points of Deq,M = tp(b1a2a3). Then M is a
pseudo-action iff there exist b2, b3, a1 such that for {i, j, k} = {1, 2, 3} :

(i) bi, aj are independent; ak ∈ acl(bi, aj);
(ii) bi, bj are independent; bk ∈ acl(bi, bj);
(iii) ai is independent from {b1, b2, b3}.

Moreover, if b′2 ∈ acl(b2), a3 ∈ acl(b′2, a1), then b2 ∈ acl(b′2).

This theorem will be used in both stages of the argument. First it will be applied
to find a one-dimensional group, via its regular action. Then we will want to use it
to find the field structure, via the group of affine transformations.

We now formulate a version more suitable for our needs.

Definition. f = (fij : i ∈ I, j ∈ J) is an indiscernible array if whenever i1 <
· · · < in, j1 < · · · < jm then tp(fiνjµ : 1 ≤ ν ≤ n, 1 ≤ µ ≤ m) depends only
on n,m. If at least the rank r of this type depends only on n,m, we say that
rk(f ;n,m) is defined and equals r. If rk(f ;n,m) is defined for all n,m, we say that
f is rank-indiscernible, of type α, where α(n,m) = rk(f ;n,m).

Remark 6.2. It is easy to see that if f is rank-indiscernible, of rank α, then there
exists a polynomial p ∈ Z[x, y] such that α(m,n) = p(m,n) for large m,n. p
is either equal to xy or is affine. If one considers indiscernible “arrays” of higher
dimensions d, the polynomial can have degree up to d. It would be nice to determine
the possibilities.

Lemma 6.3. Let (fij : i, j < ω) be an indiscernible array of elements of D, of type
α.

(a) Suppose α(n,m) = m+n− 1. Then there exists a definable one-dimensional
group (A,+) and elements ai, a

j of A such that acl(fij) = acl(ai + aj).
(b) Suppose α(m,n) = 2m+ n− 2 (m ≥ 2, n ≥ 2). Then there exist a definable

field F and independent elements ai, bi, cj ∈ F , acl(fij) = acl(aicj + bi).
(c) Suppose α(m,n) = λm+ n− λ (m ≥ 2, n ≥ λ). Then there exist a definable

group G of dimension λ, a definable one-dimensional set X, a definable action of G
on X, and independent elements gi of G and aj of X such that acl(fij) = acl(gi ·aj).
(Moreover, λ ≤ 3.)

Remark 6.4. We will only use the existence of a definable one-dimensional group,
or field, and not the full conclusion. In case (a) the proof does not require an infinite
array; it suffices to have a rank-indiscernible array, of size at least 3× 3. This does
not hold for 6.3(b) however. For example in a vector space over the rationals, let
ai, bj , ck be linearly independent; then fjj = ai+ bj + icj forms a rank-indiscernible
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array of eventual type 2m+ n− 2, but no field is interpretable in the vector space.
(One could also get a finite indiscernible array of any prescribed size, though of
course not with acl(∅) = dcl(∅) infinite.)

Remark 6.5. An indiscernible array of the type mentioned in 6.3(b) can be viewed
as a diagonal in a generalized three-dimensional array (fijk : i, j, k < ω), with
type α(n,m, p) = n+m + p− 2 (eventually). Such a three-dimensional array can
arise from a field (fijk = ai(cj + bk)) but also from an Abelian group structure
(fijk = ai + bj + ck). Probably these are the only possibilities.

Proof of 6.3. We prove 6.3(c). The other clauses follow using [Hr6] or [Ch]. We
will use the following general remark. The same proof is valid in any homogeneous
geometry, which has been sufficiently localized.

Claim 1. Suppose rk(c/d1d2) = rk(c/d1) = rk(c/d2). Then there exists e ∈
acl(d1) ∩ acl(d2) such that rk(c/e) = rk(c/d1d2).

Proof. Let E = acl(d1) ∩ acl(d2). Let c = (c1, . . . , cm); say c1, . . . , ck are inde-
pendent from d1d2, while c ∈ acl(c1 · · · ck, d1d2). Then

c ∈ acl(c1 · · · ck, di, E) (i = 1, 2).

We must show that c ∈ acl(c1 · · · ck, E). We use induction on rk(di/E). If rk(d1/E)
= rk(d2/E) = 0, we are done. Otherwise say rk(d2/E) = r > 0, and choose
d ∈ acl(d2), d ∈ D, d 6∈ E. By assumption E is infinite. Now for all but finitely
many d′ ∈ E, there exists d′2 such that:

(i) rk(d′2/d
′E) < r,

(ii) c ∈ acl(c1 · · · ck, d′2, E).

(Since the corresponding facts are true of d, with witness d2, and there exists a
single formula ensuring this.) Choose such a d′ ∈ E. Further choose d′2 satisfying
(i), (ii). We may choose d′2 independent from d1 over E ∪ {c, d2}. Since c is
independent from d1 over E ∪{d2}, d′2 is independent from d1 over E ∪{d2}. Thus
acl(d′2E) ∩ acl(d1E) ⊆ acl(d2E) ∩ acl(d1E) = E. Using (i) and induction we have
c ∈ acl(c1 · · · ck, E), as required.

We will now find a configuration (a1, a2, a3, b1, b2, b3) as in 6.1. We may ex-
tend the given array (fij) so as to be defined for all integers i, j (perhaps in some
elementary extension). Let:

b1 = (f1,−c, . . . , f1,−1), b3 = (f2,−c, . . . , f2,−1),

a3 = f1,0, a1 = f2,0.

We need to define b2 and a2. This is done as follows.
Claim 2. (a) There exists a2 ∈ acl(b1a3) ∩ acl(b3a1) with rk(a2) = 1.
(b) There exists b2 ∈ acl(b1b3) with rk(b2) ≤ λ, rk(a1a3/b2) = 1.
Proof. (a) Let y = (f3,−c, . . . , f3,0). One computes from the given type α of

the array that rk(y/b1a3) = rk(y/b2a1) = rk(y/b1a3b2a1) = λ. By Claim 1, there
exists a2 ∈ acl(b1a3) ∩ acl(b2a1) such that rk(y/a2) = λ. We have rk(a2) ≥ 1 since
rk(y) = λ+ 1. Now

2λ+ 1− rk(a2) = rk(b1a3b2a1/a2) ≤ rk(b1a3/a2) + rk(b2a1/a2)

= rk(b1a3) + rk(b2a1)− 2 rk(a2) = 2(λ+ 1)− 2 rk(a2).

So rk(a2) ≤ 1.
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(b) Let b′1 = (f1,−2c, . . . , f1,−c−1), b′3 = (f2,−2c, . . . , f2,−c−1). By the type of the
array, rk(a1a3/b1b3) = rk(a1a3/b

′
1b
′
3) = rk(a1a3/b1b3b

′
1b
′
3) = 1. By Claim 1, there

exists b2 ∈ acl(b1b3) ∩ acl(b′1b
′
3) with rk(a1a3/b2) = 1. As in (a), we have:

3λ− rk(b2) = rk(b1b3b
′
1b
′
3/b2) ≤ rk(b1b3) + rk(b′1b

′
3)− 2 rk(b2)

=2λ+ 2λ− 2 rk(b2).

So rk(b2) ≤ λ.
By choosing b2 in (b) with rk(b2) least possible, we may satisfy the “moreover”

clause in 6.1. The problem is thus only to show that necessarily rk(b2) = λ. Since
b2 ∈ acl(b1b3), and using the indiscernibility, we have that

rk(f1,nf2,n/b2) = 1 for all n.

Thus rk(f11 · · · f1,λ, f21 · · · f2,λ/b2) ≤ λ, and so rk(f11 · · · f1,λ, f21 · · · f2,λ) < 2λ.
This contradicts the formula α(2, λ) = 2λ+ λ− λ = 2λ.

In order to show that bi ∈ acl(bj , bk) for any choice of i, j, k it suffices now to
show that b3, b1 are independent (and b3, b2 are independent). This follows from
the fact that b3 ∈ acl(b′1b

′
2), once we know that b1, b

′
1, b
′
2 are independent. We

know that a 2 × λ rectangle from (fij) is independent; we need to know that
f1n is independent from f1,<n, f2,<n. If this were not so, then by indiscernibility,
f1N ∈ acl(f1,<n, f2,<n) and f2N ∈ acl(f1,<n, f2,<n) for N ≥ n, so that α(2, N) is
bounded, a contradiction.

6.3. Finding the indiscernible arrays. From now on we assume that D is a
strongly minimal set; or even that D is an infinitely-definable set in some saturated
structure, such that every definable subset of D is finite or cofinite. We also assume
the existence of the notion of a specialization between tuples of elements of Deq,
and the notion of a regular specialization. We collect the properties of these notions
that we will use.

Assumptions. We adopt the notations 4.5, 4.6, and the definition 5.14(a) of
“good”. (Formally, we may define specializations on nonspecial sorts by fixing
a representation of such a sort as a disjoint union of special sorts, and using the
induced topology; in fact of course we will only use elements of special sorts.)

6.6. (1) If tp(a) = tp(a′), then a→ a′. If a→ a′ and a′ → a′′, then a→ a′′. Let
a = (ai : i ∈ I), ι : J → I a map of index sets, aι = (aι(j) : j ∈ J). If a→ a′,
then aι → a′ι. If a1 = a2 and a → a′, then a1 = a′1. If a ∈ D is a generic
singleton and a′ ∈ D, then a→ a′.

(2) If a→ a′, then tp(a) = tp(a′), or rk(a) > rk(a′).
(3) (Dimension theorem) Let a → a′′; suppose a(1), a(2) ∈ D, a(1) 6= a(2),

a′′(1) = a′′(2). Then there exists a′, a → a′ → a′′, a′(1) = a′(2), with
rk(a→ a′) = 1.

(4) Let (ai : i ∈ I) be independent over b and indiscernible over b. Suppose
(a′i : i ∈ I) is indiscernible over b′, and aib→ aib

′ for each i. Further suppose
rk(b→ b′) ≤ 1, and b→ b′ is good. Then (bai : i ∈ I)→ (b′a′i : i ∈ I). (5.15).

(5) Amalgamation Lemma 5.14.
(6) Let H be a definable (one-dimensional) Abelian group. Then if

∑
ai = 0 in

H and (ai) → (a′i) and each a′i is a generic element of H, then
∑
a′i = 0.

In particular if a + b = c + d, (abcd) → (a′b′c′d′) and a′, . . . , d′ are generic
elements of H, then a′ = c′ implies b′ = d′.
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(7) If aa′ → bb′, if a → b, a′ → b′ are regular specializations, and if a, a′ are
independent, then aa′ → bb′ is regular. If a is a generic element of D, or of a
one-dimensional definable group, then a→ a′ is always regular. Isomorphisms
are regular.

We will use below the following remark on existence of indiscernible arrays (valid
in saturated models of stable theories). If (cij : i ∈ I, j ∈ J) is an array and I ′, J ′

are subsets of I, J , we write cI′J′ for (cij : i ∈ I ′, j ∈ J ′). If |I ′| = m, |J ′| = n we
call cI′J′ an m× n rectangle from cij (m×m square, if m = n).

Lemma 6.7. Let (cij : i ∈ I, j ∈ J) be an array, with infinite index sets I, J .
Suppose Pmn is a partial type, and each m × n rectangle from (cij) satisfies Pmn.
Then there exists an indiscernible array (dij : i, j = 1, 2, 3, . . . ) such that Pmn holds
for each m× n rectangle from (dij).

Proof. The usual method of finding indiscernibles (see [CK]) shows that one may
assume: I = J = {1, 2, . . .}, and (cIj : j ∈ J) is indiscernible (i.e., (cI′j : j ∈ J) is
indiscernible for any finite I ′ ⊆ I). By stability, it is indiscernible as a set. Similarly
we may assume that {ciJ : i ∈ I} is indiscernible. Let Im, Jn be two particular
subsets of I, J of size m,n. It follows that any m× n rectangle from (cij) has the
same type as a rectangle (cI′Jm), and that (cI′J′) has the same type as cInJm . Thus
(cij) is now an indiscernible array.

Notation. We write A B|C to mean: A,B are free over C. (Cf. §3.)

Lemma 6.8. Let (Aij : i ≤ M, j ≤ N) be an indiscernible array, M,N ≥ 2.
Assume rk(A; 2, 2) = 4, rk(A; 2, 1) = 3 and that if C,C′ are two adjacent 2 × 1
rectangles, then rk(dcl(C) ∩ dcl(C′)) = 2.

Let (Aij : i, j)→ (aij : i, j) be a rank-1 specialization. Suppose tp(aij/ acl(∅)) is
constant with i, j and rk(a; 2, 1) = 2. Also assume AijAi′j′ → ai′jai′j is good for
any i, i′, j. Then a is rank-indiscernible, of type m+ n− 1.

Proof. Claim 1. Let cij = af(i)g(j) (i, j = 1, 2). Assume

(Aij : i = 1, 2, j = 1, 2)→ (cij : i = 1, 2, j = 1, 2)

is a rank-1 specialization, tp(cij/ acl(∅)) = q, rk(q) = 1. Then rk(c21c22/c11c12) ≤ 1.
Proof. Suppose for contradiction that
(i) rk(c21c22/c11c12) = 2.

In particular
(ii) rk(c11c21) = 2, rk(c12c22) = 2.

Thus rk(c12c22/c11c21) = 1. Introduce new elements c10 and c20 such that:
rk(c10c20/c11c12c21c22) = 1 and stp(c11c21c10c20) = stp(c21c11c22c12). This is pos-
sible since stp(c11c21) = stp(c21c11). Thus c21c11c22c12 → c11c21c10c20. Now

tp(A11A21A12A22) = tp(A21A11A22A12)

so

A11A21A12A22 → A21A11A22A12.

Also we know that

A21A11A22A12 → c21c11c22c12.
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Composing these three specializations, we get:
(iii) A11A21A12A22 → c11c21c10c20.

We also have:
(iv) A11A12A12A22 → c11c12c12c22.

By assumption, A11A12 → c11c12 is a good specialization, and by (ii) and the fact
that rk(A; 2, 1) = 3, it has rank 1. Thus by 6.6(5) (the amalgamation lemma
for specializations 5.7), there exist A10, A20 with rk(A10A20/A11A21A12A22) =
rk(A12A22/A11A21), and tp(A11A20/A11A12) = tp(A12A22/A11A21), such that
(Aij : i = 1, 2, j = 0, 1, 2)→ (cij : i = 1, 2, j = 0, 1, 2). In particular

(v) (Aij : i = 1, 2, j = 0, 2)→ (cij : i = 1, 2, j = 0, 2).
Now the assumptions on A give:

rk(A12A22/A11A21) = 1 = rk(A12A22/ dcl(A12A22) ∩ dcl(A11A21));

from this we calculate:
(vi) rk(Aij : i = 1, 2, j = 0, 2) = 4.
Now from the choice of c10c20, we compute rk(c10c20/c12c22). We have

{c12c22} {c10c20}|{c11c21}

but by (i), rk(c21/c11c12c22) = 1, so

{c12c22} c21|c11.

Thus by transitivity

{c12c22} {c10c20}|c11.

Now rk(c20/c11) = rk(c12/c21) = 1, so

rk(c20/c12c22) = 1.

Also rk(c10/c20c11c21) = rk(c22/c12c21c11) = 1 by (i). Hence
(vii) rk(c10c20c12c22) = 4.

Hence by (vi), the specialization (v) is an isomorphism. This is absurd since
rk(c11c21) ≤ 2 while rk(A11A21) = 3.

Claim 2A. For any set ∗ of i-indices and j ≥ 2, rk(a∗,j/a∗,<j) ≤ 1.
Proof. Otherwise, rk(aijai′j/ai1ai′1) = 2 for some i 6= i′. Since rk(a; 2, 1) =

2, rk(aijai′jai1ai′1) = 4 = rk(A; 2, 2), so AijAi′jAi1Ai′1 → aijai′jai1ai′1 is an
isomorphism, contradicting the fact that rk(A; 2, 1) = 3.

Claim 2B. For any set ∗ of j-indices and i ≥ 2, rk(ai,∗/a<i,∗) ≤ 1.
Proof. Suppose otherwise. Then there exist j1 < j2, with rk(aij1 , aij2/a<i,∗) = 2.

Let c1ν = a1jν , c2ν = aijν (ν = 1, 2). Since rk(c21c22/c11c12) = 2 and rk(c11) = 1,
we have rk(cij : i = 1, 2, j = 1, 2) ≥ 3. Thus (Aij : i = 1, 2, j = 1, 2) → (cij : i =
1, 2, j = 1, 2) is a rank-0 or rank-1 specialization. The first case would mean that it
is an isomorphism, giving a contradiction to rk(c11) = 1, rk(A11) > 1. The second
contradicts Claim 1.

It follows immediately by induction on n that any m × n rectangle from a has
rank ≤ m + n − 1. Suppose, for contradiction, that inequality is strict for some
m × n rectangle. Then by Claim 2A it remains so for the m × (n + 1) rectangle
obtained by adjoining an adjacent m × 1 array; and similarly by Claim 2B, for
the (m + 1)× (n+ 1) rectangle obtained by further adjoining a 1× (n + 1) array.
Continuing in this way one finds that the inequality is strict for m = M,n = N ,
contradicting the assumption that the specialization A→ a has rank 1.
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Lemma 6.9. Let Aij be an indiscernible array with rk(A;m,n) = 2m + n − 1.
Suppose that if C,C′ are two adjacent 1× 3 rectangles, then

rk(dcl(C) ∩ dcl(C′)) = 2.

Let (Aij : i ≤ M, j ≤ N) → (aij : i ≤ M, j ≤ N) be a rank-1 specialization, and
suppose rk(a; 1, k) = k. Further assume AijAij′Aij′′ → aijaij′aij′′ is good for any
i, j, j′, j′′. Then a is rank-indiscernible, of type 2m+ n− 2 (m ≥ 2, n ≥ 2).

Proof. Similar to the proof of 6.8. We first observe that any m × n rectangle
from a has rank ≤ 2m + n − 2. Otherwise the specialization A → a would be an
isomorphism on this rectangle and hence on each of its elements, but rk(Aij) = 2,
rk(aij) = 1.

Claim 1. Let (cij) be a 2 × 3 rectangle from a. Assume (Aij : i = 1, 2, j =
1, 2, 3)→ (cij : i = 1, 2, j = 1, 2, 3) is a rank-1 specialization, rk(c; 1, k) = k. Then
it is not the case that rk(c∗3/c∗1c∗2) = 2.

Proof. Suppose rk(c∗3/c∗1c∗2) = 2. Then rk(c∗1c∗2) = 3. Permuting the in-
dices 1 and 2 if necessary, we may assume rk(c12c21c22) = 3. Define c0∗ with
rk(c0∗/c1∗c2∗) = 2 and stp(c0∗c1∗) = stp(c2#c1#), where ∗ = (1, 2, 3), # = (3, 1, 2).
One obtains a contradiction as in the proof of Claim 1 of 6.8.

Claim 2A. For any set ∗ of j-indices and i ≥ 2, rk(ai,∗/a<i,∗) ≤ 2. This is indeed
immediate from our assumptions, since if the claim fails we may take ∗ to be a
set of three indices, and since rk(a; 1, 3) = 3 by assumption, we would get a 2 × 3
rectangle of rank 6, contrary to the initial observation.

Claim 2B. For any set ∗ of i-indices and j ≥ 3, rk(a∗,j/a∗,<j) ≤ 1.
To prove 2B note that we may take ∗ to consist to two indices, say 1 and 2.

Further by Claim 2A, we must have rk(a1ja2j : j ≤ N) ≥ 2 +N , since otherwise by
induction on m, rk(aij : j ≤ N, i ≤ m) < 2m+N−2, contradicting the assumption
with M = m that A → a is a rank-1 specialization. We next observe that as
a consequence of Claim 1, there cannot be two distinct values of j for which the
present claim fails. Hence if the claim fails at j0, then 2 +N ≤ rk(a∗j : j ≤ N) ≤
rk(a∗j : j ≤ j0)+(N−j0) so rk(a∗j : j ≤ j0) ≥ 2+j0 and hence rk(a∗j : j < j0) ≥ j0.
From this and the fact that the claim holds below j0 it follows that rk(a∗1) = 2
and that for some j′ < j0, rk(a∗1a∗j′) = 3. This again contradicts Claim 1.

Now the proof is finished as in 6.8.

Lemma 6.10. If D is nondegenerate, then there exists a definable one-dimensional
Abelian group.

Proof. We may assume D is not locally modular, otherwise the conclusion holds
by [Hr2]. So there exists a two-dimensional family C(e) ⊆ D2 (e ∈ E) of “plane
curves”. We may assume the family is normal (3.9). Write C(e, a, b) for “(a, b) ∈
C(e)”. Write C2(e; ab, a′b′) if C(e; a, b) and C(e; a′b′), and if ab, a′b′ are independent
over e and have the same type over acl(e), and e is a generic point of E. Then

(i) C2(e; ab, a′b′) implies that rk(aba′b′) = 4.
(ii) C2(e; ab, a′b′) implies eaba′b′ → eabab.

The first statement follows from the following computations: rk(e/aba′b′) <
rk(e/ab)
< rk(e) = 2 so rk(e/aba′b′) = 0; and so rk(aba′b′) = rk(e) + rk(ab/e) + rk(a′b′/e)
= 2 + 1 + 1 = 4.

The second statement follows from 6.6(4). Fix an integer M momentarily.
Let ai, bj (i, j = 0, 1, 2, . . . ,M) be independent generic elements of D. Then for
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i, j ≥ 1 there exists eij ∈ E such that C2(eij ; aibj, a0b0). Let Aij = (ai, bj, eij),
A = (Aij)ij≥1. We may choose eij so that (Aij : i, j ≥ 0) is indiscernible (first
make arbitrary choices, then use 6.7). Note that eij ∈ acl(a0b0aibj), and so
the assumptions on A in 6.8 are valid over the base {a0b0}. Write x → ∗y for
(x, a0, b0)→ (y, a0, b0).

Claim 1. Let A′ij = Ai1 for j ≥ 1. Then A→ ∗A′.
Proof. Immediate from 6.6(4).
Claim 2. Let A′′ij = (a0, b0, ei1). Then A′ → ∗A′′.
Proof. A′′ij and A′ij do not depend on j, so as specializations respect repeated

entries, it suffices to show that (A′i1 : i)→ ∗(A′′i1 : i).
Again this follows from 6.6(4): a0b0b1 → a0b0b0 by (ii) and this is a good rank-

1 specialization (since (a0b0b1) is a generic point of D3). A′i1 is indiscernible and
independent over a0b0b1, and A′′i1 is indiscernible over a0b0b0. For any given i,
(ai, b1, ei1, a0, b0)→ (a0, b0, ei1, a0, b0) by (ii). Thus 6.6(4) applies.

Claim 3. There exists A∗ = (A∗ij) and a rank-1 specialization A → ∗A∗, such
that:

(i) stp(A∗ij/a0b0) does not depend on i, j, and has rank 1.
(ii) A∗ij = (a0b0e

∗
ij) for some e∗ij .

(iii) A∗ is rank indiscernible, of type m+ n− 1.

By the two claims, A → ∗A′′. By 6.6(3) there exists A∗ = (A∗ij), A
∗
ij =

(a∗i , b
∗
i , e
∗
ij), such that A→ ∗A∗ → ∗A′′, a∗1 = a0 and A→ ∗A∗ is a rank-1 special-

ization. Since (a∗i b
∗
je
∗
ija0b0)→ (a0b0ei1a0b0), rk(a∗1e

∗
1j) ≥ rk(a0ei1) = 3, so equality

holds; similarly rk(a∗1b
∗
je
∗
ij) = 3, so b∗j ∈ acl(a∗1e

∗
ij). Hence rk((a∗1b

∗
je
∗
ija0b0) =

rk(a∗1e
∗
ija0b0) = rk(a0e

∗
ija0b0) = 3. So (a∗1b

∗
je
∗
ija0b0) → (a0b0ei1a0b0) is an iso-

morphism. Hence b∗j = b0. Dually one shows now that each a∗i = a0. Thus
A∗ij = (a0b0e

∗
ij). Now A∗ → ∗A′′ also gives e∗ije

∗
i′j′ → ∗ei1ei′1 so if i 6= i′

(since rk(ei1ei′1/a0b0) = 2 and rk(e∗ije
∗
i′j′/a0b0) ≤ 2) we have tp(e∗ije

∗
i′j′/a0b0) =

tp(ei1ei′1/a0b0). Thus stp(e∗ij/a0b0) = stp(e∗i′j′/a0b0) = q (say), and of course this

remains true if i = i′. It follows that stp(A∗ij/a0b0) does not depend on i, j, and
has rank 1.

(iii) follows from 6.8 once we verify the “goodness” hypothesis there. We must
show that (a0, b0, ai, a

′
i, bj, eij , ei′j) → (a0, b0, a0, a0, b0, e

∗
ij , e

∗
i′j) is good. Now

(a0, b0, bj, eij , ei′j) → (a0, b0, b0, e
∗
ij , e

∗
i′j) is a rank-1 specialization, and is regular

by 6.6(7). (Indeed (a0, b0, eij , ei′j)→ (a0, b0, e
∗
ij , e

∗
i′j) is an isomorphism, bj → b0 is

a regular rank-1 specialization, and bj is independent from (a0, b0, eij , ei′j).) Also
(bj , eij) → (b0, e

∗
ij) is an isomorphism, and ai ∈ acl(bj, eij); similarly (bj , ei′j) →

(b0, e
∗
i′j) is an isomorphism, and ai′ ∈ acl(bj , ei′j). Hence the specialization is good

by the recursive definition of goodness.
Claim 4. With M still fixed, in Claim 3 there is only a finite number of possi-

bilities for tp(A∗/a0b0).
Proof. The locus of A∗ over a0b0 is a component of the intersection of the locus

of A over a0b0, with the diagonal corresponding to “a∗1 = a∗0”. There are only
finitely many such components.

Now let Pm be the disjunction of the possible types in Claim 4. By compactness,
there exists an infinite array A∗ = (A∗ij : i, j = 1, 2, . . . ) such that Pm holds for
every m × m square from A∗. By 6.6(1) we may assume A∗ is indiscernible. By
6.3(a), there exists a definable one-dimensional group.
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In the following lemma, the reader may read “ample Zariski geometry” for “not
locally modular”; or see [Hr2].

Lemma 6.11. If D is not locally modular, then D interprets a one-dimensional
field.

Proof. By 6.10D interprets a one-dimensional Abelian groupH. By 5.11H may be
given a manifold structure, so that addition is a morphism. Let C(e) ⊆ (H×H) (e ∈
E) be a two-dimensional family. This may be obtained from a two-dimensional
family of subsets of D × D using a finite-to-finite correspondence between D and
H. Let C2 have the same meaning as in 6.10, so that (i), (ii) hold.

Let ai, bi, b
j (i, j = 0, 1, 2, . . . ) be independent generic elements ofH, bij = bi+b

j.
Let I = J = {1, 2, . . .}; from now on the indices i, j will range over I, J . For i, j ≥ 1
there exists eij ∈ E such that C2(eij ; aibij , a0b00). Let Aij = (ai, bij , eij), A =
(Aij)ij≥1. We may choose eij so that A is indiscernible. We have eij ∈ acl(ai, bij),
so any m× n rectangle has rank 2m+ n− 1; this remains true over {a0b00}. Write
x→ ∗y for (x, a0, b00)→ (y, a0, b00).

Claim 1. Let A′ij = A1j . Then A→ ∗A′.
Proof. {(ai, bi) : i ∈ I} is independent over B = {bj : j ∈ J} ∪ {a0, b0}.

Clearly (eij , bij) ∈ acl(B ∪ {ai, bi}). Hence (ai, biJ , eiJ )i∈I is independent over B.
Indiscernibility is also clear, so 6.6(4) applies.

Claim 2. Let A′′ij = (a0, b00, e1j). Then A′ → ∗A′′.
Proof. It suffices to show that ((a1, b1j , e1j) : j) → ∗((a0, b00, e1j) : j). For

each j individually this follows from property (ii) of C2 (in Lemma 6.10). Note
that ((a1, b1j, e1j) : j) is indiscernible and independent over (a0, b00, a1). Since
(a0, b00, a1)→ (a0, b00, a0) by a good rank-1 specialization, 6.6(4) applies.

Now fix an integer M , and restrict attention to indices ≤M .
Claim 3. There exists A∗ = (A∗ij)i,j and a rank-1 specialization A→ ∗A∗, such

that:
(i) stp(A∗ij/a0b00) does not depend on i, j, and has rank 1. Each row A∗iJ is

independent over {a0b00}.
(ii) A∗ij = (a0b00e

∗
ij) for some e∗ij .

(iii) A∗ is rank indiscernible, of type 2m+ n− 2.
Proof. By 6.6(3) there exists A∗ = (A∗ij), A

∗
ij = (a∗i , b

∗
ij , e

∗
ij), such that A →

∗A∗ → ∗A′′, a∗1 = a0 and A→ ∗A∗ is a rank-1 specialization. We will show (i)–(iii)
hold.

(i′) We first show a weak version of (i): rk(e∗ij/a0b00) = 1, and each row (e∗iJ )
is independent over {a0b00}. Now eiJ → ∗e∗iJ → ∗e1J ; since rk(eiJ/a0b00) =
rk(e1J/a0b00) these specializations are isomorphisms, and the statement follows.

(ii′) Next, a special case of (ii): b1j = b00 for each j. Note first that (a∗i , b
∗
ij , e

∗
ij)→

(a0, b00, eij); since (a0, b00, eij) is a generic point of C, so is (a∗i , b
∗
ij , e

∗
ij). In partic-

ular b∗ij ∈ acl(a∗i , e
∗
ij). Thus

rk(a∗1b
∗
1je
∗
1j/a0b00) = rk(a∗1e

∗
1j/a0b00) = rk(a0e

∗
1j/a0b00) ≤ 1.

Now e∗1j → ∗e1j, and rk(a0b00e1j/a0b00) = 1. Thus the specialization a∗1b
∗
1je
∗
1j →

∗a0b00e1j is an isomorphism. So b∗1j = b00.
(ii) By definition of bij , we have b1j − b1j′ = bij − bij′ ; by 6.6(6), 0 = b00− b00 =

b∗1j − b∗1j′ = b∗ij − b∗ij′ ; so b∗ij = b∗ij′ for any i, j, j′.
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Let i ∈ I and let j, j′ be distinct. Then (a∗i , b
∗
ij) = (a∗i , b

∗
ij′) is a common point

of C(e∗ij) and C(e∗ij′). By (i′), e∗ij ande∗ij′ are distinct, so C(e∗ij) and C(e∗ij′) are

distinct curves, and so (a∗i , b
∗
ij) ∈ acl(e∗ij , e

∗
ij′). Thus

rk(a∗i b
∗
ijb
∗
ij′e
∗
ije
∗
ij′/a0b00) ≤ 2.

Now a∗i b
∗
ijb
∗
ij′e
∗
ije
∗
ij′ → ∗a0b00b00e1je1j′ . Since rk(e1je1j′/a0b00) = 2, this special-

ization is also an isomorphism; so b∗ij = b00 and a∗i = a0.
To verify the “goodness” hypothesis in 6.9, over a0b00, recall that

a0b00AijAij′Aij′′ = (a0b00aibijbij′bij′′eijeij′eij′′).

We have bij ∈ acl(aieij) etc., and aieij → a0e
∗
ij is an isomorphism. Further

(a0b00eijeij′eij′′) → (a0b00e
∗
ije
∗
ij′e
∗
ij′′) and ai → a0 are regular (being isomor-

phisms), and ai is free from (a0b00eijeij′eij′′), so

a0b00aieijeij′eij′′)→ (a0b00a0e
∗
ije
∗
ij′e
∗
ij′′)

is regular, by 6.6(7).
Now (i) follows from (i′) and (ii). (iii) follows from 6.9.
The rest of the proof, from Claim 4 on, is identical to the proof of 6.10 (using

6.3(b) instead of 6.3(a)).

7. Purity of the algebraic structure

In §6 we found a one-dimensional manifold F carrying a field structure. Since
addition and multiplication are morphisms, it is clear that any polynomial on Fn is
a morphism, and hence any subset of Fn defined by the vanishing of polynomials is
closed. We must now show that there are no other closed sets. Until we show that
the two topologies coincide, we will refer to the usual Zariski topology as Ta and
use the adjective “algebraic” to refer to it. The topology induced on the manifold
from the Zariski geometry structure will be denoted Tb.

7.1. Completeness of projective space. In the algebraic category projective
space is complete: for any manifold X , if C ⊆ X ×Pn is closed, then it projects to
a closed set. We do not immediately show this in the category Tb, but we show that
Pn is weakly complete: for any manifold X , if C ⊆ X ×Pn is closed and projects
to a dense subset of X , then it projects onto X . Post facto, we will know that
every closed subset of Π is algebraic, and so Pn is complete at least with respect
to algebraic X ; we have not checked the general case.

We recall the construction of projective space Pd over a field F (see e.g. [Ha]).
Consider V = F d+1 as a (d+1)-dimensional vector space over F . Let V ′ = V −(0).
Let Pd be the set of lines through 0 in V . Define a map θ : V ′ → Pd by sending
a point v to the unique line θv through 0 and v. We denote θ(x0, . . . , xd) by
(x0 : · · · : xd).

We make Pd into a manifold as follows. Let Ei = {(x0, . . . , xd) ∈ V : xi = 0},
a subspace of codimension 1. Let Xi be the set of lines contained in Ei. Then⋂
ιEi = ∅. Cover Pd by the sets Ui = Pd −Xi; and let αi : Ui → F d be the map

sending the line through (x1, . . . , xi−1, 1, xi, . . . , xd) to (x1, . . . , xd). The transition
maps F d → F d are morphisms since inversion on F − (0) and multiplication of
F × F are morphisms. Since F d is a manifold, this gives a manifold structure to
Pd also. Moreover θ is a morphism, and in particular Pd is Tb-irreducible.
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Proposition 7.1. Let X be a manifold, C ⊆ X ×Pn be closed, and assume πXC
is dense in X. Then C projects onto X.

Proof. Let Y = Pn. Replacing C by an irreducible component projecting onto a
dense subset of X , if necessary, we may assume C is irreducible. Let V, V ′, θ :
V ′ → Y be vector spaces and maps as above, corresponding to the projective
space structure of Y . Let θ also denote the map from X × V ′ to X × Y given by
θ(x, v) = (x, θv). Let C∗ be the closure in X × V of θ−1C. Since θ is a morphism,
θ−1C is closed in X × V , so C∗ ∩ (X × V ′) = θ−1C.

For α ∈ F , v ∈ V and x ∈ X , write α · (x, v) for (x, αv). This is a morphism on
X × V ; if α ∈ F x, it is an isomorphism.

Claim. If (x, v) ∈ C∗ and α ∈ F x, then (x, αv) ∈ C∗.
Proof. If (a, v) ∈ (θ−1C), then for any α ∈ F x, (a, αv) ∈ (θ−1C); thus (θ−1C) ⊆

α−1(θ−1C) ⊆ α−1C∗ = {(x, v) : (x, αv) ∈ C∗}; since this last set is closed and
contains θ−1C, it must contain C∗.

We have dimC∗ = dim(C) + 1. Let Z be a component of C∗ of maximal
dimension. Then α−1Z is also a component of C∗ of maximal dimension. Thus F x

acts on the set {Z1, . . . , Zm} of such components. Hence {α ∈ F x : α−1Zi = Zi for
each i} has index at most m! in F x. It is a closed subgroup, hence equal to F x.
Fix a component Z of C∗ of maximal dimension. Then dimZ > dim(X × (0)), so
dim(Z∩ (X×V ′)) = dim(C)+1. Thus θ(Z∩ (X×V ′)) is a dense subset of C; so it
projects to a dense subset of X . Let a ∈ X be a generic element. Then there exists
b ∈ Z(a). Since Z is F x-invariant, F xb ⊆ Z(a). But Z(a) is closed, so Fb ⊆ Z(a).
Thus (b, 0) ∈ Z. So {x ∈ X : (x, 0) ∈ Z} contains a generic element of X , hence
equals X . We have shown that for any a ∈ X , Z(a) 6= ∅. But by the dimension
theorem in X ×V , dimZ(a) ≥ dimZ− dimX = 1. Hence Z(a) is infinite; so there
exists (a, v) ∈ Z, v 6= 0. Thus (a, v) ∈ C∗ ∩ (X × V ′) = θ−1C. So (a, θv) ∈ C,
showing that a ∈ πXC. So C projects onto X , as required.

We now make the assumption that F = D (as sets). This assumption has
the effect of limiting the number of manifolds Y considered in the definition of
completeness; the assumption is harmless for the purposes of this section. We did
not investigate the situation without it, except for 7.4 below which will be needed
later.

By a Ta-manifold we will mean one locally modelled on Ta-regular subsets of
Fn. Then it is clear that any Ta-manifold can also be viewed as a Tb-manifold, and
Ta-morphisms are Tb-morphisms. We require the following improvement.

Lemma 7.2. Assume F = D. Let M,N be Ta-manifolds. Assume M is isomor-
phic as an algebraic variety to a subvariety M ′ of N , via a map g : M → N . Then
g : M → M ′ is a closed map in Tb. Moreover if Y is a Tb-manifold then the map
(idY , g) : Y ×M → Y ×M ′ is a closed map.

Proof. We have an open covering of M by open affine subsets Mi, and of N by
open affine subsets Nj . We may choose the sets Nj small enough that g−1Nj is
contained in some Mi. It suffices to show that g is closed on each g−1Nj ; hence
we may assume M,N are affine. Thus we may view M,N as Ta-regular subsets
of Fm, Fn respectively. The fact that g is an isomorphism implies that for each
coordinate map xi on Fm, the map xig

−1 is a regular map on M ′, and hence there
exists a rational map ri on Fn with no poles on M ′ such that ri = xig

−1 on M ′.
The map r = (r1, . . . , rm) is a morphism from its domain to Fm, since the field
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operations are morphisms; and r coincides with g−1 on M ′. Now let X ⊆ M be
closed. Let X ′ = cl(X) taken in Fm. Then X = M ∩X ′, and fX = M ′ ∩ r−1X ′.
Since r is a morphism, X ′ is closed in dom(r), so gX is closed in M ′. The moreover
clause follows similarly, using 5.9.

From this we can deduce:

Proposition 7.3. Assume F = D. Let M be a Ta-manifold, algebraically isomor-
phic to a projective variety. Then M is weakly complete.

Proof. Let f : M → M ′ be an isomorphism, M ′ a subvariety of Pd. Let Y be a
Tb-manifold. Let C ⊆ Y ×M be closed, and assume C projects onto a dense subset
of Y . Let F (y,m) = (y, f(m)). Then by 7.2, F is a closed map into Y ×M ′, so
F (C) is closed in Y ×M ′. Since M ′ is closed in Pd, F (C) is closed in Y ×Pd. The
projection of F (C) to Y coincides with the projection of C to Y , so is dense in Y ,
and hence by 7.1 equals Y .

Lemma 7.4. Let Y be a projective algebraic variety and X a Tb-manifold, both
irreducible of dimension one. Let h be a closed irreducible subset of X × Y , and
assume h is the graph of a partial function from X to Y , with dom(h) dense in X.
Then h is total, dom(h) = X.

Proof. Y can be embedded in (P1)n for some n, and we will view it that way. Let
πi be the projections from (P1)n to P1, fi = πih, and Fi the Zariski closure of the
graph of fi. Note that fi is the projection to X ×P1 of the intersection of copies
of πi×Y and of h×P1 on X×P1× (P1)n, so every component of this intersection
has dimension at least one, hence it must be irreducible of dimension one, and it
follows that Fi is irreducible. By 7.1 Fi projects onto X . Since the dimension is
one there is no exceptional locus, and by 4.8 Fi is the graph of a function X → P1.
We can put the Fi back together into a morphism F : X → (P1)n. This morphism
agrees with h generically, and hence must be equal to h.

7.2. Irreducibility. A good way to satisfy the dimension theorem would appear to
be to let a Tb-closed set be a certain kind of open subset of a Ta-closed set. Every
Ta-closed set would be Tb-closed, but in general reducible. We must rule out this
scenario. On the constructible level it was shown in [Hr4], Theorem 1, that the
notion of irreducibility does not change, but here we must take smaller-dimensional
components into account, and so the argument must be somewhat refined.

Proposition 7.5. Let X be a closed, irreducible subset of Fn in the Ta-topology.
Then it is closed, irreducible in the Tb-topology.

Here we may restrict attention to subsets of Fn, so we may assume that D = F
(as sets). Hence any Ta-manifold is a Tb-manifold.

Lemma 7.6. If an algebraic curve C ⊆ Pn is Ta-irreducible, then it is Tb-
irreducible.

Proof. We use the following algebraic facts; all refer to Ta. The reader is referred
to any book on algebraic geometry, e.g. Lang’s Introduction to algebraic geometry
[L].

(i) There exists a smooth curve C′ ⊆ P3 and a morphism from C′ onto C.
(ii) If C is a smooth curve, there exists an integer g associated with C, the genus

of C, with the following properties.
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(a) If g = 0, then there exists a Ta-morphism P1 → P3 whose image is C.
(b) If g > 0, then there exists a variety J of dimension g admitting an

algebraic group structure, with zero point 0. J is a divisible Abelian
group. Moreover,

(c) There exists a surjective morphism h : Cg → J such that:
(∗) for all c1 ∈ C, for all (c2, . . . , cg) in some dense open subset H of

Cg−1, for all d1, . . . , dg ∈ Cg, if h(c1, . . . , cg) = h(d1, . . . , dg), then
di = cσ(i) for some permutation σ of {1, . . . , g}.

Remark 7.7. By 5.11 and 5.12, we may view J as a Ta-manifold, in a unique way;
this also makes it into a Tb-manifold. Since J is divisible, it has no proper subgroups
of finite index, and hence by 5.12(a) J is irreducible as a Tb-manifold. We will use
this to prove the lemma.

Remark 7.8 (and proof of (c)). (c) states that outside of some proper closed subset
F of Cg, h identifies two g-tuples iff one is a permutation of the other; moreover,
no translate of the divisor C + · · ·+C (added g− 1 times in J) is contained in hF .
For lack of a reference to the latter statement, we provide a proof.

We use the following further facts, see [L]. A divisor is a formal sum of elements
of C, with integer coefficients. If f : C → P1 is a rational function, then Z(f ) is
the formal sum of its zeroes, counted with multiplicities, P (f ) = Z(1/f ), (f ) =
Z(f )− P (v) (a divisor).

(d) For 2g elements of C, we have h(x1, . . . , xg) = h(y1, . . . , yg) iff there exists a
rational function f : C → P1 such that

(f ) = x1 + · · ·+ xg − y1 − · · · − yg
(as formal divisors.)

(e) (Weak Riemann-Roch.) Given a set s of t points of C, let L(s) be the space
of rational functions f : C → P1 whose poles have multiplicity 1, and are
among the points of s. Then L(s) is a linear space, of F -dimension t− g + 1
if t ≥ 2g − 1.

To prove (c), let E = {x ∈ Cg : for some y, not a permutation of x, h(y) = h(x)}.
We must show that cl(E) is a proper subset of Cg, and moreover:

(c, x2, . . . , xg) 6∈ E for generic x2, . . . , xg.(∗)

Suppose for contradiction that (c, x2, . . . , xg) ∈ E for generic x2, . . . , xg. Then
h(c, x2, . . . , xg) = h(y1, . . . , yg), where (c, x2, . . . , xq) is not a permutation of
(y1, . . . , yq). By (d), there exists a nonconstant rational function f : C → P1

with poles at most at {c, x2, . . . , xg}, and there poles of multiplicity 1. Thus
L(c, x2, . . . , xq) contains nonconstant functions. If L(c) contains a nonconstant
function f , then f takes the value ∞ at only one point, hence is a bijection be-
tween C and P1, so g = 0, contrary to assumption. Thus there exists i < g such
that L(c, x2, . . . , xi) contains only constant functions, while L(c, x2, . . . , xi, xi+1)
contains a nonconstant one. Let L∗(U) denote L(c, x2, . . . , xi, U). Then L∗(∅)
is one-dimensional, while L∗(y) is (at least) two-dimensional for generic y ∈ C.
Let Y be a set of 2g mutually generic elements of C. Evidently for any y ∈ Y ,
L∗(y)∩L∗(Y −{y}) = L∗(∅); so we have a direct sum of 2g subspaces L∗(y) over the
constants in L∗(Y ), and hence this space has dimension ≥ 2g+ 1 > (2g+ i− g+ 1).
This contradicts (e).
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We proceed to prove the lemma. By (i) it suffices to prove that C′ is irreducible;
so we may assume C is smooth. We know that the strongly minimal set P1 is
irreducible, since it was obtained by glueing together two irreducible open sets.
(One could also argue using the descending chain condition on closed sets.) Thus
any continuous image of P1 is irreducible. Hence by (ii)(a) we may assume the genus
of C is at least 1. Let J be as in (ii)(b,c), and let F be a connected component of
the graph of h projecting to a dense subset of J . Consider F as a subset of J×P3×
· · · ×P3. The hypotheses of refprop:seventhree are verified; so F projects onto J .
Now suppose C has an infinite, proper, Tb-closed subset Y . Then we may choose
F ⊆ (J×Y ×· · ·×Y ). But then any point in πJF has the form h(y1, . . . , yg) where
each yi is in Y . Picking c 6∈ Y , and generic x2, . . . , xq, we have h(c, x2, . . . , xq) =
h(y1, . . . , yg) with yi ∈ Y , and in particular yi 6= c. Thus (c, x2, . . . , xq) is not a
permutation of (y1, . . . , yg), contradicting (c). This contradiction shows that C is
irreducible.

Lemma 7.9. If an algebraic set C ⊆ Pn is Ta-irreducible, then it is Tb-irreduc-
ible.

Proof. As was noted above, by Theorem 1 of [Hr4], C has at most one Tb-component
C′ of maximal dimension. We must show that C = C′. If dim(C) = 1 we are done;
otherwise we use induction on the dimension. Let a ∈ C. Let C′′ = cl(C′−C). We
have dim(C′′) < dim(C). Choose a generic linear hypersurface H through a; then
dim(C′′ ∩H) ≤ max(0, dim(C′′)− 1). Let E be a Ta-component of C ∩H passing
through a. Then dim(E) ≥ dim(C)− 1 ≥ max(1, dim(C′′)). So E is not contained
in C′′. By induction, E is Tb-irreducible. Since E ⊆ C = C′′ ∪ C′, E is contained
in C′. This shows that a ∈ C′. Since a ∈ C was arbitrary, C′ = C.

7.3. The purity argument.

Proposition 7.10. Any closed subset of Fn is algebraic.

We first concern ourselves with curves in P2. Consider the algebraic curves.
Such a curve is defined by an equation:

C(a) = {(x : y : z) ∈ P2 :
∑

aijx
iyjzd−i−j = 0},

where a = (aij : i+ j ≤ d) is in F d(d+1)/2. Note that C(a) is actually determined
by the projective point θa. Thus if q(d) = (d + 1)(d + 2)/2− 1, we have a closed
set C = Cd ⊆ Pq(d) ×P2,

C = {(θ(aij : i+ j ≤ d), (x : y : z)) :
∑

aijx
iyjzd−i−j = 0}

such that C(a) runs through all algebraic curves of degree d in P2.
When we think of Pq(d) as coordinatizing curves of degree d, we will write Qd =

Pq(d). If d = 1, then the curves C(a) are called lines. When d ≥ 2, the curves
C(a) are not necessarily reducible. In particular, any union of d lines has the form
C(a) for some a. The set of points a ∈ Qd such that C(a) is the union of lines is
a Ta-closed subset, of dimension 2d. We denote it by Ld. If a ∈ Ld, Cd(a) is the
union of d lines, not necessarily all distinct; a point of Cd(a) lying on more than
one of these is called a double point of Cd(a).

We will use the fact that the dimension theorem holds in Pn (it is locally Fn).
We will also use the following purely algebraic facts. Both could be shown either
explicitly (partial derivatives) or using dimension-theoretic arguments. The second
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fact states essentially that a line is tangent to a curve in Ld iff it is one of the
component lines, or passes through a double point.

Lemma 7.11. For any q(d) points in P2 there exists a ∈ Qd such that Cd(a)
passes through all q(d) points.

Proof. Let points (xs : ys : zs) (s = 1, . . . , q(d)) be given. Let R = {(i, j, k) :
i+ j+ k = d}. For r = (i, j, k) ∈ R, let crs = xisy

j
sz
k
s . Then (crs) is a matrix of size

q(d)− 1 by q(d). Thus there exists a nonzero vector (br) such that
∑
crsbr = 0 for

all s. The homogeneous equation
∑
bijkx

iyjzk now describes a curve of degree d
passing through the q(d) points.

Lemma 7.12. There exists a Ta-closed set F ⊆ Qd ×Q1 ×P2 ×P2 such that:
(i) If e ∈ Qd, b ∈ Q1, a1, a2 ∈ Cd(e) ∩ C1(b) and a1, a2 are distinct, then

(e, b, a1, a2) ∈ F .
(ii) If (e′, b′, a′, a′) ∈ F, e′ a generic point of Ld, then a′ is a double point of

Cd(e
′), or else C1(b′) is one of the components of Cd(e

′).

Proof. Let F ′ = {(u, v, x1, x2) : u ∈ Qd, v ∈ Q1, x1, x2 ∈ Cd(u) ∩C1(v)}, and let F
be the union of all components of F ′ not contained in the diagonal x1 = x2. Then
(i) holds. (Actually it is easy to see F is irreducible.)

To show (ii), assume first that (e∗, b∗, a∗1, a
∗
2) ∈ F , where (e∗, b∗) is a generic

point of Ld × Q1; we claim a∗1 6= a∗2. Let (e, b, a1, a2) be a generic point of F ,
specializing to (e∗, b∗, a∗1, a

∗
2). Let Cd(e) ∩ C1(b) = {a1, . . . , ad}. We can extend

the specialization to a specialization (e, b, a1, . . . , ad) → (e∗, b∗, a∗1, . . . , a
∗
d). By 4.8

Cd(e
∗) ∩ C1(b∗) consists precisely of {a∗1, . . . , a∗d}. But by genericity the points of

intersection of C1(b∗) with the d component lines of Cd(e
∗) must all be distinct, so

{a∗1, . . . , a∗d} has size d. In particular a∗1 6= a∗2.
Now let (e′, b′, a′, a′) ∈ F , with e′ a generic point of Ld. Let Y be the component

of F ∩ (Ld × Q1 × P2 × P2) in which (e′, b′, a′, a′) lies, and let (e∗, b∗, a∗1, a
∗
2) be

a generic point of Y . If C1(b∗) is one of the components of Cd(e
∗), then the

corresponding fact holds true for b′, e′, so (ii) holds. Otherwise, C1(b∗) ∩ Cd(e∗)
is finite, so the projection of Y to the first two coordinates is finite-to-one on
some open set. Since Y has codimension ≥ 4 in (Ld × Q1 × P2 × P2), by the
dimension theorem, this forces (e∗, b∗) to be a generic point of Ld ×Q1. By the
above, a∗1 6= a∗2. Let L∗i be a component line of Cd(e

∗) on which a∗i lies. We have a
specialization (e∗, b∗, a∗1, a

∗
2, L
∗
1, L
∗
2) → (e′, b′, a′, a′, L′1, L

′
2). Since e∗, e′ are generic

in Ld, (e∗, L∗1, L
∗
2) → (e′, L′1, L

′
2) is an isomorphism, and hence L′1 6= L′2. Thus a′

lies on the two lines L′1, L
′
2, showing it is a double point of Cd(e

′).

Definition. (i) A closed irreducible subset of P2 will be called a curve.
(ii) If S ⊆ P2 is a curve, then a generic line intersects S in some definite number

of points, which we call deg(S).

Lemma 7.13. For any e ∈ Qd and any curve S, if Cd(e) ∩ S is finite, then it has
size at most d · deg(S).

Proof. If S is a subset of an algebraic curve, then by 7.9 it is an algebraic curve,
and this is standard; so we assume it is not. So Cd(d) always meets S in a finite
set, and the exceptional set for the correspondence Cd ∩ (Qd × S) on (Qd × S) is
empty. Note that each irreducible component T of Cd ∩ (Qd × S) has codimension
one in Cd, so T (x) is nonempty for generic x ∈ Qd. Thus 4.8 is applicable here.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ZARISKI GEOMETRIES 41

((4.7A) certainly holds for any irreducible component of Cd ∩ (Qd × S), since S
may be embedded in P2.)

Let e∗ be a generic point of Qd. Applying 4.8 to each component of Cd∩(Qd×S),
|Cd(e) ∩ S| ≤ |Cd(e∗) ∩ S|. Hence we may assume e is generic. Let Cd(e) ∩ S =
{a1, . . . , ar} have size r. Let bij ∈ Q1 be the line passing through ai, aj . Let
u = (e, a1, . . . , ar, b12, . . . , br−1,r), and let H be the locus of u. By genericity of e,H
projects onto a dense subset of Qd; so by 7.3 H projects onto Qd. Let e′ ∈ Ld be
generic. Then (e′, a′1, . . . , b

′
r−1,r) ∈ H for some a′1, . . . , b

′
r−1,r. Recall F of 7.12; by

7.12(i) (e, bij , ai, aj) ∈ F for all i < j, hence (e′, b′ij , a
′
i, a
′
j) ∈ F . By 7.12(ii) this

implies that the points a′i are distinct, unless C1(b′ij) is one of the components of
Cd(e

′).
However, aiaj → a′ia

′
j is a rank-1 specialization (rk(ai) = 1 since ai ∈ S, a′i 6∈

acl(∅) since Cd(e
′) passes through a′i and e′ is generic). Thus it is not exceptional,

so rk(b′ij/a
′
ia
′
j) ≤ rk(bij/ai, aj) = 0. Hence if C1(b′ij) is one of the components of

Cd(e
′), then rk(e′/a′ia

′
j) ≤ rk(Qd−1) = 2(d− 1). But rk(e′) = 2d, so rk(a′ia

′
j) = 2,

and in particular, they are in any case distinct.
Thus Cd(e

′) ∩ S has at least r points. But Cd(e
′) is just the union of d generic

lines, hence |Cd(e′) ∩ S| = d · deg(S). This proves the required inequality.

Lemma 7.14. Every curve is algebraic.

Proof. Let S be a curve. Choose d such that q(d) > d ·deg(S). By 7.11 there exists
e ∈ Qd such that C = Cd(e) meets S in at least q(d) points. By 7.13, C ∩ S must
be infinite. By 7.6, C ⊆ S; since S is irreducible, C = S.

Proof of 7.10. By [Hr4], 3.1, Ta and Tb have the same constructible sets. If X is
Ta-closed, it is Tb-closed. If X is Tb-closed and irreducible, let X∗ be the Ta-closure
of X . Clearly X∗ is Ta-irreducible. Now X∗ − X has Morley rank smaller than
that of X , and this is a constructible notion. So dimX = dimX∗ in Tb. But by
7.14 X∗ is irreducible in Tb, so X = X∗. Thus the two topologies coincide.

8. Theorem B

In this section we prove Theorem B and Proposition 1.1.

Theorem D. Let D be an ample Zariski geometry. Then there exists an alge-
braically closed field K and a surjective Zariski map f : D → P1(K). f maps
constructible sets to (algebraically) constructible sets, and in fact is a closed Zariski
map on D − F for some finite F .

Remark 8.1. (a) From a model-theoretic point of view, K is interpretable in D, and
the induced structure is the pure field structure (with a subfield of distinguished
constants).

(b) One may show for strongly minimal sets D in general: if the statement of (a)
holds, then the field K of (a) can be interpreted without parameters. This gives
a canonicity statement which is trivial here, since the language names constants
for a model. However a more satisfying canonicity statement will be obtained later
(Theorem B′).

Proof of Theorem B. By 6.11 D interprets a one-dimensional field K. By 5.11
and 5.13 K may be given a manifold structure, so that the field operations are
morphisms. By Macintyre’s theorem [Ma], K is algebraically closed. (This may
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also be deduced here as follows. If f is a nonconstant polynomial, then f describes
a morphism from K to K, carrying z to f(z). f extends to a morphism g from P1

to P1, by taking the closure of its graph. By 7.1 g is surjective, and so attains the
values 0 and ∞. Since f does not take the value ∞, we must have g(∞) = ∞, so
g(a) = 0 for some a 6=∞, hence f(a) = 0 and f has a root.)

Since K is interpreted in D, if a is a generic point of K, then

a ∈ acl(d1, . . . , dk) for some d1, . . . , dk ∈ D.
Minimizing k and working over {d1, . . . , dk−1}, we find generic points a, b of K,D
respectively, such that acl(a) = acl(b).

Lemma 8.2. There exists a nonconstant morphism D → P1.

Proof. Let a, b be generic points of D,K respectively with acl(a) = acl(b). Let C(a)
be the locus of b over a. Then C(a) is a finite subset of K, hence is the set of roots of
a unique monic polynomial

∑
bix

i. C(a) is left invariant by automorphisms fixing
a, hence so is each coefficient bi; thus bi ∈ dcl(a). We have b ∈ acl(b0, . . . , bn−1)
and so not all the elements bi can be in acl(∅). Pick one of the coefficients, b′,
which is not in acl(∅). Let H be the locus of (a, b′) over acl(∅). Then H is a closed,
irreducible set of dimension 1. For generic a ∈ D, H(a) has a single point. Hence
by 4.13 and 4.8, for all a′ ∈ D, H(a′) has at most one point, or else some H(a′) is
infinite. The infinite case is impossible, since a′×K would then be a component of
H, but H is irreducible. So H is the graph of a partial function. By 7.1 it is total,
and hence a morphism D → P1.

Claim. There exists a surjective morphism D → P1.
Proof. Let h : D → P1 be a nonconstant morphism. Composing with a linear

fractional transformation, we may assume the points 0,∞ are in the range hD of
h. Let n be larger than |P1 − hD|, and prime to the characteristic. Every element
of P1 − {0,∞} has n distinct nth roots, and it follows that for every a ∈ P1, some
nth root of a is in the range. Thus composing h with the nth power map yields a
surjective morphism.

Lemma 8.3. Every surjective morphism h : D → P1 is a Zariski-closed map on
some cofinite subset of D.

Proof. Let b ∈ P1 be generic, and let h−1(b) = {a1, . . . , am}. Let F ∗ be the locus
of (b, (a1, . . . , am)) over acl(∅). We will find an “inverse morphism” to h, from
a cofinite subset of P1 into the special sort [D]m. Recall [D]m is defined as the
quotient ofDm by Sym(m); let q : Dm → [D]m be the quotient map. Then F = qF ∗

is a closed, irreducible subset of P1 × [D]m. For generic b ∈ P1, F (b) consists of
a single point. (If (b, (a′1, . . . , a

′
m)) ∈ F ∗, then a′1, . . . , a

′
m are distinct elements

of h−1(b), so q(a′1, . . . , a
′
m) = q(a1, . . . , am).) Thus as in 8.2, since dim(F ) = 1,

F is the graph of a partial function f , with domain Y ⊆ P1. Let Z = h−1Y ,
a cofinite subset of D. Then h is closed on Z. For if C ⊆ Zk is a closed set,
then so is C# = {((a1

1, . . . , a
1
m), . . . , (ak1 , . . . , a

k
m)) ∈ (Dm)k: for some function

ν : {1, . . . , k} → {1, . . . ,m}, (a1
ν1, . . . , a

k
νk) ∈ C}. Hence qC# is also closed. Now

S = {s ∈ [D]m : h is constant on s} is a closed subset of [D]m, and f(b) ∈ S for
generic b, so f(b) ∈ S for all b. Thus hC = f−1(qC#) and so hC is closed.

This finishes the proof of Theorem B.

Using 7.4, it seems 8.3 could be stated for an arbitrary algebraic curve rather
than P1, improving Theorem B′.
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Remark 8.4. Lemma 8.3 probably cannot be improved to “h is Zariski-closed”. For
example one may take a cover h : D → P1 where h−1(a) has two points except for
a = 0, h−1(0) has a single point, and the closed sets are generated by the graphs of
equality, the set B = {(x, y) : hx = hy, x 6= y}, and the inverse images under h of
the closed subsets of P1.

We now recall and prove:

Proposition 1.1. Let C be a smooth curve over an algebraically closed field F , and
C′ a smooth curve over a field F ′. Suppose h : C → C′ is an isomorphism of Zariski
geometries. (The induced map on Cn is a homeomorphism for each n.) Then there
exists an isomorphism of fields hF : F → F ′, such that h is an isomorphism of
algebraic varieties with respect to the identification of fields hF .

Proof. Let K be a field interpretable in the Zariski geometry C; in the present case
this can be done explicitly, since C is given as an algebraic curve, and one sees
directly that K is isomorphic to F by an F -definable map g : F → K. Viewing
K as a C-manifold as in §5, it becomes also an F -manifold, and by 5.12 g is a
morphism of manifolds. The isomorphism h : C → C′ extends to an isomorphism
between (C,K) and (C′,K ′) for some K ′ interpretable over C′. Now since K ′

is interpretable over C′ and C′ over F ′,K ′ is also interpretable over F ′, perhaps
by a different formula than the one interpreting K over F . At all events (by
[Po]) there exists an F ′-definable field isomorphism g′ : F ′ → K ′. Let p be the
characteristic exponent, and let Fr(x) = xp be the Frobenius map (on any of the
fields involved). Extend h to F by the formula: g′hF = Frn hKg, where n is an
integer to be determined later. We view h = (hF , hC , hK) as a map from (F,C,K)
to (F ′, C′,K ′).

Let F (C) be the field of rational functions on C (considered as functions from
C to the projective line P 1(F ) = F ∪ {∞}), and let Fp(C) be its perfect closure,

the field of all functions of the form h(x)1/q , where h ∈ F (C) and q is a power of
p. Let F ′p(C

′) be defined analogously.
Claim. h carries Fp(C) to F ′p(C

′).

Proof. We use the following characterization of Fp(C): a function c : C → P 1(F )
is in Fp(C) if and only if it is not constantly ∞, and the graph of c is a closed
irreducible subset of C × P 1(F ).

Let c : C → P 1(F ) ∈ Fp(C). Then the graph of c in C ×P 1(F ) is Zariski closed
and irreducible. Since g is a morphism, the same is true of the graph Γ of g ◦ c. h
preserves the Zariski topologies, and hence h(Γ) is closed irreducible. Now h(Γ) is
the graph of Fr−n ◦g′ ◦h(c). Since Fr and g′ are morphisms (of Zariski geometries),
the graph of h(c) is closed irreducible, and so h(c) ∈ F ′p(C′).

Claim. h carries F (C) to Frm(F ′(C′)), for some m.
Proof. Let X be the collection of subfields of F ′(C′) containing F ′, whose perfect

closure is F ′p(C
′). If L,L′ ∈ X , then we may choose x ∈ L, x′ ∈ L′ such that L is

separable over F (x), and L′ over F (x′). For some m, we have p(Frm(x), x′) = 0,
where p is a nonzero polynomial, separable in both variables. Thus Frm(L) is
separable over L′, and L′ over Frm(L); so Frm(L) = L′. We have shown that the
elements of X form a single orbit under the action of Frobenius. Since h clearly
carries X to the correspondingly defined X ′, the Claim follows.

Thus with an appropriate choice of the integer n, we obtain h such that h
carries F (C) to F ′(C′). If we use h to identify F and F ′, then hC is a bijection
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carrying rational functions to rational functions, and hence is an isomorphism of
varieties.

9. Internal and external covers

Towards the proof of Theorem A, we require some analysis of covers; up to
Proposition 9.6 we work in the constructible category. These lemmas are valid
in any omega-stable structure (or any stable structure, if one replaces types by
∗-types, and finite sets by countable ones).

Definition. Let P,Q be types over a finite set A, and let f : P → Q be an A-
definable map. Also let R be a set. f : P → Q is called R-external if for any finite
B containing A, and any a, a′ in P independent from B over A, if f(a) = f(a′) = c,
then a, a′ are conjugate over R ∪B ∪ {c}.

A type Q over A is R-internal if for some finite B containing A, no two distinct
points of Q are conjugate over R.

In general, we will omit A from the notation.

Remark 9.1. The notion of R-internal was introduced in [Hr7], in a different for-
mulation (for Q a type over an algebraically closed set).

(∗) For some B and some a ∈ Q independent from B, a ∈ dcl(B ∪R).
We show the equivalence of the two versions. If (∗) holds, let B∗ be a set such

that for any conjugate B′ of B over A,B∗ contains a conjugate of B′ over acl(A).
B∗ can be chosen finite, by omega-stability. Let B# contain enough independent
copies of B∗, so that any element of Q is independent over A from some copy of
B∗ inside B#. Now any a′ ∈ Q is conjugate to a over A, and hence for some
B′ conjugate to B over A, and independent from a over A, a′ ∈ dcl(B′′ ∪ R).
Thus for any B′′ conjugate to B′ over acl(A), and independent from a over A,
a′ ∈ dcl(B′ ∪R). Since such a B′′ exists inside B#, we have a′ ∈ dcl(B#∪R). We
have shown that (∗) is equivalent to:

(∗∗) For some finite B, Q ⊆ dcl(B,R).
Clearly (∗∗) implies our definition of R-internal; the converse follows from 3.3

and 3.4. Thus the three definitions coincide.

Lemma 9.2. Let P be a type over the finite set A, and let R be an A-definable set.
Then there exists a type P ∗ over A (consisting perhaps of imaginary elements), and
a definable map f : P → P ∗, such that :

(i) P ∗ is R-internal.
(ii) f : P → P ∗ is R-external.

Proof. We assume notationally A = ∅. By omega-stability, there exists a∗ ∈ dcl(a)
such that:

(i) a∗ ∈ P ∗, an R-internal type over A.
(ii) If b ∈ dcl(a) and is in an R-internal type over A, then b ∈ dcl(a∗).
We may write a∗ = f(a), where f : P → P ∗ is a definable function. We must

show f : P → P ∗ is R-external. Consider the equivalence relations E0, E,E
∗ on P

defined as follows:
aE0 a

′ if f(a) = f(a′);
aE a′ if f(a) = f(a′) and for any B independent from {a, a′}, a, a′ are conjugate

over B ∪R ∪ f(a);
aE∗ a′ if f(a) = f(a′), and a, a′ are conjugate over acl(f(a)).
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By omega-stability, E∗ is a definable equivalence relation, refining each E0-class
into a finite number of classes.

By [Hr7], Proposition 2.4, for any B independent from a, a is independent from
B ∪ R over f(a). Thus if f(a) = f(a′) and tp(a/ acl(f(a))) = tp(a′/ acl(f(a′))),
then a, a′ are conjugate over B ∪ R ∪ {f(a)}. So if aE∗a′, then aE a′. Thus
E∗ ⊆ E ⊆ E0. It follows that E is a definable equivalence relation, refining each
E0-class into a finite number of classes.

Let f# be such that f#(a) = f#(a′) iff aE a′. Let P# be the type of f#(a), a ∈
P . Then P# is R-internal. To see this note first that since E refines E0, we have
f = gf# for some g. Fix a# ∈ P#, b = g(a#). One can choose a finite B such that
P ∗ ⊆ dcl(B,R), b is independent from B, and if g(c) = b, c 6= a#, then c, a# are
not conjugate over B ∪ {b}∪R. (There are finitely many possible choices of c, and
for each one such a B exists.) But then b ∈ P ∗ ⊆ dcl(B,R), g−1(b) ⊆ acl(b), and no
two points of g−1(b) are conjugate over B ∪ {b} ∪R, so g−1(b) ⊆ dcl(B,R), and in
particular a# ∈ dcl(B,R). Thus P# is R-internal. By (ii), f#(a) ∈ dcl(f(a)). It
follows that g is 1-1, and E = E0. This proves that f is R-external, as required.

Remark 9.3. Let f : P → P ∗ be as above: P ∗ is R-internal, and f : P → P ∗ is
R-external. Let Q be any R-internal type over A, and g : P → Q any A-definable
map. Then there exists an A-definable map h : P ∗ → Q such that g = hf . In
particular, if g is finite-to-one, then so is f .

Proof. We must show that if f(a) = f(a′), then g(a) = g(a′). Suppose not. For
some B independent from a, a′ over A, we have Q ⊆ dcl(B ∪ R). Now a, a′ are
conjugate over B ∪R; so g(a), g(a′) are conjugate over B ∪R; since g(a), g(a′) are
in dcl(B ∪R), they must be equal.

Lemma 9.4. Let f : P → Q be R-external (over A), c ∈ Q, b ∈ P, f(b) = c. Let
B be independent from b over A. Then b is independent from R ∪ B ∪ {c} over
A ∪ {c}.

Proof. It suffices to show that for any finite R0 ⊆ R, b is independent from R0 ∪
B ∪ {c} over A. This is clear since there exists some b′ ∈ f−1(c) independent from
R0 ∪B ∪ {c} over A∪ {c}, and any such b′ is conjugate to b over R0 ∪B ∪ {c}.

Notation. If P is a type over some set A, let a1, . . . , an be elements of P having the
same type over acl(A), and independent over acl(A). Then the type of (a1, . . . , an)
is determined (3.8). We denote it by [P ]k.

Lemma 9.5. Let f : P → Q be R-external, and let f [n] denote the induced map
from P [n] to Q[n]. Then f [n] is R-external.

Proof. For notational convenience we prove the case n = 2. Let B contain A, a =
(a1, a2) ∈ P [2], with a independent from B over A. We must show that tp(a/B∪R)
depends only on c = (c1, c2) = f [2](a) ∈ Q[2]. Indeed tp(a2/B ∪ R ∪ {c2}) is
determined by c2, since f is external. Letting B′ = B ∪ {a2}, we have that a1 is
independent from B′ over A, and tp(a1/B

′) is determined by c1. Together these
facts show that tp(a/B ∪R) is determined by c.

Proposition 9.6. Let P, P ∗, E, C be complete types over A, f : P → P ∗ R-exter-
nal. Suppose E ⊆ acl(R), C ⊆ E × P , and C(e) is strongly minimal for e ∈ E.
Further suppose (“ampleness”) [P ]2 ∩ C(e)2 6= ∅ for e ∈ E. Then either f is
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constant on each C(e), or else f is finite-to-one, and C(e) = f−1fC(e) for each
e ∈ E.

Proof. Let e ∈ E, and suppose f is not constant on C(e). Then the equivalence
relation f(x) = f(y) has more than one class on C(e). Since C(e) is strongly
minimal, it has at most one infinite class. Since C(e) forms a complete type over
e, if there does exist an infinite class, then every element of C(e) belongs to this
class; so there is only one class, contradicting our assumption. Thus all classes of
the equivalence relation are finite, so f is finite-to-one on C(e). In particular the
image fC(e) of C(e) under f is strongly minimal.

From strong minimality, it follows that for some integer N , whenever e 6= e′ we
have |C(e)∩C(e′)| ≤ N , or else |C(e)−C(e′)| ≤ N and |C(e′)−C(e)| ≤ N . Define
e ∼ e′ if the latter possibility holds. Let E∗ = E/ ∼, and write e∗ for e/ ∼. Then
there exists a type C∗ ⊆ E∗×P such that for any e ∈ E, the two sets C(e), C∗(e∗)
agree except perhaps for finitely many points (3.9). But all points of C(e) have the
same type over e, so C(e) ⊆ C∗(e∗). Thus the “ampleness” hypothesis holds for
C∗. Since f is finite-to-one on C(e), it is also finite-to-one on C∗(e∗). If we succeed
in showing that C∗(e∗) = f−1C(e∗), then f−1(fb) ⊆ C(e) for almost all b ∈ C(e);
since all points of C(e) have the same type, it follows that f−1(fb) ⊆ C(e) for all
b ∈ C(e), so that C(e) = f−1fC(e). Thus we may replace C by C∗; in other words
we may assume that if e 6= e′, then |C(e) ∩ C(e′)| ≤ N .

Let β be the equivalence relation on E defined by: e β e′ iff tp(e/R) = tp(e′/R).
By assumption, each β-class is finite. Let βe denote the β-class of e. Then fC(e) is
determined by βe. Moreover βE ⊆ dcl(R). Further we have e ∈ dcl(βe, a), where
a is any generic point of C(e). Indeed let e# = βe; then e is the unique element of
E satisfying: βe = e#, a ∈ C(e). For if βe′ = e# and a ∈ C(e′), while e 6= e′, then
C(e) ∩C(e′) is finite, so a ∈ acl(e, e′) = acl(e#), contradicting the genericity of a.

Since f is R-external, tp(a/f(a)) implies tp(a/f(a), βe). Since a ∈ acl(e, f(a)) =
acl(βe, f(a)) when a ∈ C(e), it follows that a ∈ acl(f(a)). Thus f is finite-to-one.

In particular, f−1fC(e) has Morley rank 1, and can only contain finitely many
curves C(e′). Let (b, b′) ∈ [P ]2, b, b′ ∈ C(e). Let b′′ be any point such that
f(b′′) = f(b′), b′′ 6∈ C(e). Then acl(b′) = acl(b′′), so (b, b′′) ∈ [P ]2. By 9.5,
tp(b, b′/βe) = tp(b, b′′/βe), hence tp(b′/b, βe) = tp(b′′/b, βe), and in particular
tp(b′/e) = tp(b′′/e). Thus b′′ ∈ C(e). Now b′′ was an arbitrary point of f−1f(b′),
so f−1f(b′) ⊆ C(e); since all points of C(e) have the same type as b′ over e,
f−1fC(e) ⊆ C(e).

Now we use the following idea: if we have a family of “curves” separating points
on P , each such “curve” is determined by its projection to P ∗ by 9.6, so the set of
curves is R-internal. If the set of curves separates points on P , then P is R-internal.
However, we need a lemma to bridge a gap between the set of curves used here,
indexed by a type, and in the original definition of very ampleness, where the index
set is a closed set. The separation of points condition in that definition states that
for any a, b ∈ D2 there exists e ∈ E such that C(e) passes through just one of
a, b. Let E∗ be the type associated with E. We need to know that for any distinct
generic a, b ∈ D2 there exists e ∈ E∗ such that C(e) passes through just one of a, b.

Lemma 9.7. Let C ⊆ X×Y be closed irreducible, X ⊆ Dm, Y ⊆ Dn, and suppose
C projects onto a dense subset of X and of Y . Let F be a proper closed subset of
Y . For generic a ∈ X, C(a) can have no component contained in F .
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Proof. Suppose otherwise. Let a be a generic element of X , and let U be the union
of all components of C(a) not contained in F . Then U is a closed set, invariant
under automorphisms fixing a, so by 4.3 U has the form C∗(a) for some closed C∗ ⊆
Dm ×Dn. We may replace C∗ by C∗ ∩ C. Then for generic a,C(a) ⊆ C∗(a) ∪ F .
Hence C ⊆ C∗ ∪ (X × F ) ∪ (F ′ × Y ) for some proper closed F ′ ⊆ X . Since C is
irreducible, it is contained in one of the three closed sets; it projects densely to X
and to Y , so C∗ is the only possibility. Thus C(a) = C∗(a) = U , so no component
of C(a) is contained in F .

Lemma 9.8. Let C ⊆ Y ×E be closed irreducible. Assume E is closed irreducible,
0-definable, with associated type E∗. Suppose C(a) 6= C(b) for distinct generic
points a, b ∈ Y . Then C(a)∩E∗ 6= C(b)∩E∗ for distinct generic points a 6= b ∈ Y 2.

Proof. Otherwise there is some 0-closed set F in E such that C(a)−F = C(b)−F .
So C(a) ⊆ C(b) ∪ F . But by 9.7, no component of C(a) lies in F . Thus all
components of C(a) are contained in C(b), so C(a) ⊆ C(b). Similarly C(b) ⊆ C(a),
so they are equal, a contradiction.

Lemma 9.9. Let dim(Y ) = 2, Y irreducible. Let C ⊆ E × Y be a generically
normal family of curves on Y : C(e) is closed irreducible and one-dimensional for
generic e ∈ E, and if e, e′ are distinct generic points, then C(e) 6= C(e′). Assume
that for generic (y1, y2) ∈ Y there exists e ∈ E with y1, y2 ∈ C(e). Then for generic
(y1, y2) ∈ Y there exists e ∈ E∗ with y1, y2 ∈ C(e).

Proof. The assumption implies dim(E) ≥ 2. For if dim(E) = 1, y1, y2 ∈ C(e),
then e ∈ acl(y1), so rk(y2) = rk(y2/y1) ≤ rk(y2/e) ≤ 1, a contradiction. Thus
rk(E∗) ≥ 2. Suppose for generic (y1, y2) ∈ Y there is no e ∈ E∗ with y1, y2 ∈ C(e).
Then for e ∈ E∗ and a generic y1 ∈ C(e), all points y2 ∈ C(e) lie on some proper
y2-closed subset of Y . This subset is one-dimensional, hence contains only finitely
many distinct sets C(e′). So e ∈ acl(y2). Thus rk(e)+rk(y/e) = rk(y), so rk(e) ≤ 1,
a contradiction.

We recall the statement of Theorem A.

Theorem A. Let X be a very ample Zariski geometry. Then there exists a smooth
curve D over an algebraically closed field K, such that X,D are isomorphic as
Zariski geometries.

Proof. Let X be a very ample Zariski geometry. Let C ⊆ E × X2 demonstrate
thatX is very ample. Since X is ample, by 6.11, 5.11, 5.13 there exists an X-
manifold K with a field structure. Let E∗ be the type associated with the closed
irreducible set E. Using 9.8, 9.9 we can strengthen (ii) of the definition of very
ample to

(ii′) For any distinct generic points a 6= b ∈ X2, there exists e ∈ E∗ such that
C(e) passes through just one of a, b.

We also have: Replacing E by another manifold if necessary, using the results of
§5 to factor out the equivalence relation C(e) = C(e′), we may assume

(iii) If e 6= e′ ∈ E∗, then C(e) 6= C(e′).
By 9.2 there exists a K-external map f : X → P , P K-internal. By 9.5 f [2] : X [2]

→ P [2] is K-external. Let C∗ be the type associated with C ⊆ E ×X2. It is easy
to see that C∗ ⊆ E∗ × [X ]2. Moreover for e ∈ E∗, the curve C(e) is the closure of
C∗(e). By 9.6, if e ∈ E∗, then C∗(e) = f−1fC∗(e). Hence if e 6= e′ ∈ E∗, then by
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(iii), C(e) 6= C(e′), so C∗(e) 6= C∗(e′), hence fC∗(e) 6= fC∗(e′). It follows that e, e′

are not conjugate over P : if σ is an automorphism fixing P , then since fC∗(e) ⊆ P
we have fC∗(σe) = σfC∗(e) = fC∗(e). Thus E∗ ⊆ dcl(P ), so E∗ is K-internal.
Now let a 6= b ∈ X2; by (ii′) there exists, say, e ∈ E∗ such that a ∈ C(e) and
b 6∈ C(e); thus if σ is an automorphism fixing P , then σe = e, so σa 6= b. Hence any
automorphism fixing P must also fix X2 pointwise. So X ⊆ dcl(P ) is K-internal.

By 9.1(∗), working over appropriate parameters, a generic element a ∈ X satisfies
a ∈ dcl(b) for some b ∈ Kn. Thus a = h(b) for some 0-definable function h. Define
bE b′ if h(b) = h(b′). Then E ⊆ K2n is a constructible set in the sense of X , hence
also in the sense of K (Proposition 7.10). The imaginary element b′ = b/E satisfies:
dcl(b′) = dcl(a). Using elimination of imaginaries 5.1 applied to K, there exists
a K-manifold V (hence an algebraic variety) and an element b′′ of V such that
dcl(b′) = dcl(b′′). Note that rk(b′′) = rk(a) = 1. Replacing V by the locus of b′′

over acl(∅), we may assume dim(V ) = 1, and V is irreducible. Further replacing V
by its normalization, we may assume it is a smooth, complete curve over K. Let H
be the locus of (a, b′′) over acl(∅). Then H is a closed irreducible subset of X × V ,
dim(H) = 1, and for generic x ∈ X there exists a unique v ∈ V with (x, v) ∈ H,
and vice versa. By 4.13 and 4.8, for each x ∈ X there exists at most one v ∈ V
with (x, v) ∈ H, and vice versa. V may be embedded in P3, so H may be seen
as a subset of X × V ⊆ X × P3, and hence by 7.1 H projects onto X . Let D be
the projection of H to V ; D is a cofinite subset of V . Then H is the graph of a
bijective morphism between X and D.

This ends the proof of Theorem A.

Recall now the situation of Theorem B′. D is an ample Zariski geometry; we
use the full language Lfull, including constants for the elements of D. We took an
elementary extension D∗ of D, with respect to the language Lfull. When we wish
to refer to the original D within D∗, we will call it M ; it is an elementary submodel
of D∗. We let G be the group of automorphisms of the triple (D∗, D, Lfull); we do
not require that they fix pointwise either D or Lfull. Any automorphism of D as a
Zariski geometry extends to an element of G. The natural language Lnat is the set
of relations of Lfull left fixed by G.

In the proof of Theorem B′, the words definable, 0-definable, etc. will be with
respect to Lfull, except where explicitly indicated to the contrary.

Theorem B′. Let D be an ample Zariski geometry, and let Lnat be the natural
language of D. There exists a field K, a smooth curve C over K, and a surjective
finite-to-one Zariski map f : D → C, all 0-definable in Lnat.

Proof. We observe that as an Lfull-structure, D is strongly minimal, and hence it
is also strongly minimal as an Lnat-structure.

Since Lfull contains names for all elements of a model M , by Theorem B there
exists an algebraically closed field K interpretable in Lfull without parameters, and
a surjective, finite-to-one definable map D → P1(K). Let P be the complete type
D∗ −M . By 9.2 there exists a definable map f∗ : P → C∗ such that C∗ is K-
internal, and f : P → C∗ is K-external. f∗ may be extended to a definable map
f : D → C, where C is a K-internal definable set. Observe that P is G-invariant.

Let E = E(f,K) = {(x, y) ∈ D2 : f(x) = f(y)}, let Ec be the Zariski closure
of E, and let E# be the union of one-dimensional components of Ec (the other
components are finite).
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Claim. E# is Lnat-definable.
Indeed any automorphism of D must carry E to E′ = E(f ′,K ′), where K ′ is

another definable algebraically closed field, C′ is K ′-internal, and the restriction
of f ′ to P is K ′-external. By [Po], and using 7.10, K,K ′ are isomorphic by a
0-definable isomorphism in L. Hence K-internal is the same as K ′-internal, and K-
external as K ′-external. By 9.3, f ′|P = hf∗ for some h, and f∗ = h′f ′|P for some
h′. Hence E(f,K) and E(f ′,K ′) coincide on P . Now E,E′ are one-dimensional,
and so E,E′ differ by at most a finite set, and hence E# = E′#. Thus E# is
G-invariant, so it is definable in Lnat.

As E# is purely one-dimensional, and differs from an equivalence relation on
D by a finite set, one can show that E# is an equivalence relation. Clearly it
is symmetric and reflexive. If (a′, b′) and (a′, c′) are in E#, let a be a generic
element of D, and let ab→ a′b′, ac→ a′c′ be specializations, with (a, b) ∈ E# and
(a, c) ∈ E#. By 5.14 we can choose b, c such that abc→ a′b′c′. We have (b, c) ∈ E
and hence (b, c) ∈ E#, so also (b′, c′) ∈ E#. (We are using here the fact that
a→ a′ is regular, and dim(D) = 1.)

As in the proof of Theorem A, or of 1.1, C may be given the structure of a curve
over K; we may take C to be smooth and complete. We have a definable map
f∗ : P → C; let F be the Zariski closure of f∗ in P × C. Using 4.8 we see that F
is the graph of a partial function from D to C. By 7.4, F is total. We write F ∗R
for the inverse image of R ⊆ Cn under the map (F, . . . , F ).

Let H be the group of automorphisms of C as a curve over K. Then H is a
definable group, with connected component H ′. H ′ is sharply transitive on Ck for
some k = 0, 1, 2 or 3. H acts on Cn for every n. Let L(C) be the set of definable
relations on C that are invariant under the action of H. It is easy to see that every
definable relation on C is L(C)-definable with parameters (see [Hr6], Proposition
5). Indeed in the present case, for every definable relation R on Cm there exists an
H-invariant relation R′ on Cm+k such that R = R′(b) for some b ∈ Ck.

Claim. Let R be a closed irreducible subset of Cn (defined over the prime field).
Then F ∗R is Lnat-definable.

Proof. By the remark preceding the claim, it suffices to prove this when R is
in L(C). Let g be an element of G; we must show that g(F ∗R) = F ∗R. g takes
(C,K,R, F ) to (C′, F ′, R′,K ′), and g(F ∗R) = F ′∗R′. Composing F ′F−1 (viewed
as bijections from D/E# to a subset of C) and taking Zariski closure we get a
definable bijection H : C → C′. It is a morphism, and hence a Zariski isomorphism.
Hence g−1H is also a Zariski isomorphism from C to C. By 1.1 it can be obtained
by composing a field automorphism with an element of H. But R is in L(C) and is
defined over the prime field, so R is invariant under H and under automorphisms
of the field. Thus g−1HR = R, and it follows that g(F ∗R) = F ′∗R′.

It follows that C and the structure on it can be found in Leq
nat, proving the

theorem.

Example 9.10. It is not true that every closed subset of Dn is definable in Lnat,
with parameters from D. For instance one may take a double cover D = (Z/2Z)×
K, where K is an uncountable algebraically closed field. To describe the structure
on D, let:

L0 = {+, ·, 0, 1;π2} (the language of K and the projection to K).
L1 = L0 ∪ {π1} (add the projection to {0, 1}, or equivalently a predicate for
{0} ×K and for {1} ×K).
L2 = L1 ∪ {ci}i (add constants for all elements of K).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



50 EHUD HRUSHOVSKI AND BORIS ZILBER

Define gi : D → D (in L2) by: gi(ι, y) = (ι, y + ci) and let:

L = L0 ∪ {gi}i.
Now we consider D in the language L as a Zariski geometry. Note that L ⊆ L2,

and so Lnat ⊆ (L2)nat. But adding constants does not change the Zariski structure,
and hence not the natural language, so (L2)nat = (L1)nat. Thus Lnat is a countable
language. Hence Lnat is a sublanguage of L0 ∪ {gi : i ∈ I}, where I is countable.
Choose cj outside the Q-space generated by the {gi : i ∈ I}. Then one sees
easily by an automorphism argument that gj is not definable with parameters in
L0 ∪ {gi : i ∈ I}. This shows that Lnat + parameters 6= L.

Example 9.11. If we took the natural language of a higher-dimensional manifold
M , it would no longer be true that a 0-definable field can be found.

Let K be an algebraically closed field of positive characteristic, n > 1, and let
φ(y) be the Frobenius map taken to some negative power above −n. Define a
permutation σ on Kn by mapping (x1, . . . , xn) to (φxn, x1, x2, . . . , xn−1). We will
choose D as a reduct of Kn, taking only the closed subsets of Dl left-invariant
under σ. Note that σ is definable in K and σn is an automorphism of Kn, so that
if C is a 0-closed set in (Kn)m, then C ∪ σC ∪ · · · ∪ σn−1C is 0-definable in Dm.
But here there is no 0-definable field.

It can be shown that an ℵ1-categorical structure interpreting a pure infinite field
must interpret such a field over acl(∅). The above example shows the algebraic
parameters cannot be removed, even in the almost strongly minimal context.

10. Nonalgebraic Zariski geometries

By Theorem B, a new ample Zariski geometry can only be obtained as a finite
cover of the projective line over an algebraically closed field. We describe a method
for obtaining such covers.

We consider abstract groups G acting on Zariski geometries X so that the graph
of each element of g is closed irreducible, i.e., g is a morphism. We assume that each
orbit of G on X is regular or degenerate; in other words if gx = x, then g′x = x for
all g′ or g = 1. Such actions will be called semi-free.

Proposition 10.1. Let X be a Zariski structure, G an abstract group, and let there
be given a semi-free action of G on X. Let i : G∗ → G be a group homomorphism
with finite kernel H. Then there exist a Zariski geometry X∗, a semi-free action
of G∗ on X∗, and a closed, surjective Zariski map j : X∗ → X, such that i, j are
compatible. If X is complete, then X∗ is complete.

Proof. Let X0 = {x ∈ X : gx = x for all g ∈ G}. By the semi-freeness assumption,
for any g 6= 1, X0 is the set of fixed points of g; hence X0 is a closed subset of X .
If X0 = X we may take X∗ = X , and G∗ acting trivially on X∗; so we may assume
X0 is finite.

Let X∗ be a set on which there is a semi-free action of G∗, such that G∗ acts
trivially on a set X∗0 of the same size as X0, and regularly on each orbit outside
X∗0 ; and such that the number of nondegenerate G∗-orbits equals the number of
nondegenerate G-orbits on X . Define an equivalence relation E on X∗ : xE y iff
there exists h ∈ H with hx = y. Then E is respected by the action of G∗; so G∗

acts on the quotient X∗/E, in such a way that H acts trivially. Thus X∗/E can
be considered as a G-set. It has the same number of degenerate orbits as does X ,
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and the same number of regular ones, hence is isomorphic to X as a G-set. Thus
there exists a map j : X∗ → X carrying X∗0 to X0, and such that jg∗ = i(g∗)j.

If U is a closed subset of Xn, and w a partial map from n2 into G∗, define

F (U,w) ={(x1, . . . , xn) ∈ X∗n : w(ν, ν′)(xν) = xν′ for (ν, ν′) ∈ dom(w),

and (jx1, . . . , jxn) ∈ U}.

We call the pair (U,w) normal if the following conditions hold:

(i) dom(w) is an equivalence relation. w(ν, ν) = 1.
(ii) If (ν, ν′) ∈ dom(w), then U ⊆ {(x1, . . . , xn) : i(w(ν, ν′))(xν) = xν′}.
(iii) If (ν, ν′), (ν′, ν′′) ∈ dom(w), then w(ν, ν′′) = w(ν′, ν′′)w(ν, ν′).
(iv) Let J(U) = {ν : U ⊆ {x : xν ∈ X0}}. Then w(ν, ν′) = 1 whenever ν, ν′ ∈ J

and (ν, ν′) ∈ dom(w).

Claim 1. If (U,w) is normal, then any point of U lifts to a point of F (U,w).
Proof. Let (x1, . . . , xn) ∈ U . Let R be a set of representatives for the equivalence

relation dom(w). Choose x∗ν ∈ X∗ with j(x∗ν) = xν (ν ∈ R). For arbitrary
µ ≤ n, let ν ∈ R be such that (ν, µ) ∈ dom(w), and let x∗µ = w(ν, µ)(xν). Then
j(x∗µ) = i(w(ν, µ))(xν) = xµ; and (x∗1, . . . , x

∗
n) ∈ F (U,w).

Claim 2. For any U,w there exists a normal U ′, w′ with F (U,w) = F (U ′, w′).
Proof. Let J = {ν ∈ {1, . . . , n} : for all x ∈ F (U,w), xν ∈ X∗0}. Without

changing F (U,w), we may replace U by U ∩{x ∈ Xn : xν ∈ X0 for ν ∈ J}. Further
we may change w so that w(ν, ν′) = 1 when (ν, ν′) ∈ dom(w) and ν, ν′ ∈ J . (i)
may be met by adding (ν, ν′′) to dom(w) whenever it is missing and (ν, ν′) and
(ν′, ν′′) ∈ dom(w), and letting w(ν, ν′′) = w(ν′, ν′′)w(ν, ν′); repeating this process
will make dom(w) an equivalence relation without changing F (U,w). If (iii) fails,
then

w(ν, ν′′)−1w(ν′, ν′′)w(ν, ν′) 6= 1,

yet w(ν, ν′′)−1w(ν′, ν′′)w(ν, ν′)xν = xν whenever x ∈ F (U,w), so ν ∈ J and sim-
ilarly ν′, ν′′ ∈ J ; but then w(ν, ν′′) = w(ν′, ν′′) = w(ν, ν′) = 1, a contradiction.
Finally (ii) may be met by reducing U .

Claim 3. There is no infinite descending chain of sets F (U,w).
Proof. Suppose such a chain F (Ui, wi) exists. We may assume each (Ui, wi) is

normal. Let U∗i be the intersection of all Uj , j ≤ i. Then F (U∗i , wi) = F (Ui, wi). By
the descending chain condition on closed subsets of Xn, U∗i = U for all large enough
i; so we may assume all Ui = U . Let J = {ν ∈ {1, . . . , n} : for all large enough i
and all x ∈ F (Ui, wi), xν ∈ X0}, and let w′i be wi restricted to the complement of
J . Then F (U,w′i) = F (U,wi) for large i, so we may assume dom(wi) does not meet
J×{1, . . . , n}. Now suppose (ν, ν′) ∈ dom(wi)∩dom(wj) and wi(ν, ν

′) 6= wj(ν, ν
′).

Then for any k ≥ i, j and any x = (x1, . . . , xn) ∈ F (Uk, wk), we have x ∈ F (Ui, wi)
and x ∈ F (Uj , wj), so wi(ν, ν

′)xν = xν′ = wj(ν, ν
′)xν , hence xν ∈ X0. Thus ν ∈ J ,

so wi(ν, ν
′) = 1 = wj(ν, ν

′), a contradiction. Thus wi ∪ wj is a function for all i, j;
so we may assume wi ⊆ wj when i ≤ j. But then the value of wi stabilizes for large
i, so the sets F (U,wi) are eventually equal; a contradiction.

Claim 4. The sets F (U,w) are closed under intersections.
Proof. By the previous claim, it suffices to consider the intersection of two sets

F (U,w) and F (U ′, w′). Let Q = {(i, j) ∈ dom(w) ∩ dom(w′) : w(i, j) 6= w′(i, j)},
and let Q1 = {i : (i, j) ∈ Q for some j}. Let w′′ be the function with domain
equal to dom(w) ∪ dom(w′)−Q, and let U ′′ = U ∩U ′ ∩ {(x1, . . . , xn) : xi ∈ X0 for

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



52 EHUD HRUSHOVSKI AND BORIS ZILBER

i ∈ Q1}. Then

F (U,w) ∩ F (U ′, w′) = F (U ′′, w′′).

We define a closed subset of X∗n to be a finite union of sets of the form F (U,w)
and singletons. It follows from the previous two claims that the closed sets form a
Noetherian topology.

Claim 5. Let (U,w) be normal, U infinite. Then F (U,w) is irreducible iff:

(i) U is irreducible.
(ii) If U ⊆ {(x1, . . . , xn) : f(ν) = xν′}, f ∈ G, then (ν, ν′) ∈ dom(w).

If these conditions hold, then dimF (U,w) = dimU .
Proof. If F (U,w) is irreducible, then using Claim 1 one sees easily that U is

irreducible. If U ⊆ {(x1, . . . , xn) : f(xν) = xν′}, let C = {w′ : w ⊆ w′, dom(w′) =
dom(w) ∪ {(ν, ν′)}, and iw′(ν, ν′) = f}. Then C is finite (of the same size as H),
and F (U,w) =

⋃
{F (U,w′) : w′ ∈ C}. By irreducibility, F (U,w) = F (U,w′) for

some w′. The proof of Claim 1 now shows that w = w′. This proves (ii).
Now suppose (i), (ii) hold, but F (U,w) is contained in a finite union of proper

subsets F (Ui, wi) and singletons; we may take (Ui, wi) normal. Using Claim 1,
we see that U is contained in the union of the sets Ui and singletons. Since U is
irreducible and infinite, it must be contained in some Ui. Since (Ui, wi) is normal,
U ⊆ Ui ⊆ {(x1, . . . , xn) : i(wi(ν, ν

′))(xν) = xν′} whenever (ν, ν′) ∈ dom(wi). By
(ii) it follows that dom(wi) ⊆ dom(w). One concludes easily that wi = w and
F (Ui, wi) = F (U,w).

Claim 6. Let (U,w) be normal, and let V be a closed irreducible subset of U .
Then there exists w′ such that (V,w′) is normal and F (V,w′) is irreducible, and
contained in F (U,w). In fact F (V,w) is the union of finitely many such sets.

Proof. Let e be the set of pairs (ν, ν′) such that V ⊆ {(x1, . . . , xn) : f(xν) = xν′}
for some f ∈ G. Then e is an equivalence relation, refining dom(w). All the maps
w′ we will obtain will have domain e.

Let v∗ = (x1, . . . , xn) be any element of F (V,w). Define w′ = w′(v∗) as follows.
Let (ν, ν′) ∈ e. If xν = xν′ ∈ X∗0 , let w′(ν, ν′) = 1. Otherwise let w′(ν, ν′) be the
unique g ∈ G∗ such that gxν = xν′ . One verifies immediately that (V,w′) is normal,
and v∗ ∈ F (V,w′). The conditions of Claim 5 are also satisfied. If (ν, ν′) ∈ dom(w),
then by normality of (U,w) we have (ν, ν′) ∈ e; and since v∗ ∈ F (V,w), either
ν, ν′ ∈ J(V ) or w′(ν, ν′) = w(ν, ν′). Thus v∗ ∈ F (V,w′) ⊆ F (V,w). Since there are
only finitely many possibilities for w′, the claim is proved.

Claim 7. Let (U,w) be normal, U irreducible. Every component of F (U,w)
projects onto U , and has dimension equal to dim(U).

Proof. Applying Claim 6 to U , we see that F (U,w) is covered by irreducible sets
F (U,w′), where F (U,w′) projects onto U . Every component of F (U,w) must be one
of these sets. The fact that dimF (U,w′) ≥ dim(U) also follows from Claim 6, using
induction on dim(U). For the other inequality, any infinite closed irreducible subset
of F (U,w′) has the form F (V,w′′) for some closed irreducible V ⊆ U and some w′′

satisfying the conditions in Claim 5. It then follows from (ii) of the definition of
normality, and (ii) of Claim 5, that if U = V , then dom(w′) = dom(w′′); and hence
using (iv) of the definition of normality, that w′ = w′′. Thus if F (V,w′′) is a proper
subset of F (U,w′), then V 6= U , and by induction on dimension we may conclude
dimF (U,w′) ≤ dim(U).

The verification of property (Z0) of the definition of a Zariski geometry is trivial.
We proceed to show the other conditions hold.
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(Z1) Let C = F (U,w) ⊆ X∗n be irreducible, and let π be the projection from
X∗n to X∗k. We must show that for some proper closed subset F ∗ of cl(πC), πC ⊇
cl(πC)− F ∗. We may assume (U,w) is normal.

We first make the following observation. Let π′ be some projection to
∏
i∈sX

∗,
where s is a subset of the coordinates; and assume that for any ν 6∈ s, there is some
ν′ ∈ s with (ν′, ν) ∈ dom(w). Then π′C is closed. Indeed choose, for any ν 6∈ s,
some ν′ ∈ s with (ν′, ν) ∈ dom(w), and let h(ν) be the morphism i(w(ν′, ν)). Let
H be the map carrying (xν : ν ∈ s) ∈

∏
i∈sX to

(xν : ν ∈ s) ∧ (h(ν)(xν′) : ν′ 6∈ s) ∈
∏
i∈s

X ×
∏
i6∈s

X = Xn.

Then H is a morphism, so U ′ = H−1(U) is closed. But π′C = F (U ′, w′), where w′

is the restriction of w to s. Thus π′C is closed.
By virtue of this observation, factoring π into two projections, we may as-

sume: there are no (ν′, ν) ∈ dom(w) with ν′ ≤ k, ν > k. Let π also denote
the projection from Xn to Xk, and let V be a proper closed subset of cl(πU) such
that πU ⊇ cl(πU) − V . Let w′ denote the restriction of w to {1, . . . , k}. Then
πC ⊇ F (cl(πU), w′) − F (V,w′). Using Claim 1 we see that F (V,w′) is a proper
subset of F (cl(πU), w′), so (Z1) holds. Moreover, if V = ∅, then F (V,w′) = ∅, so if
X is complete, then so is X∗.

(Z2) It suffices to show this for the sets C = F (U,w) ⊆ Xn+1. If (ν, n + 1) ∈
dom(w) for some ν ≤ n, then clearly |C(a)| ≤ 1 for all a ∈ Xn. Otherwise
C(a) = {b ∈ X : (ja, jb) ∈ U}. So either C(a) = X∗ or |C(a)| ≤ |U(ja)| · |H|.

(Z3) Let (U,w) be normal, F (U,w) irreducible, and consider the intersection
with the diagonal ∆∗ = {x∗ : x∗1 = x∗2}. We must show that F (U,w) ∩ ∆∗ is the
union of irreducible closed sets of dimension ≥ dim(U)− 1.

Let ∆ = {x ∈ Xn : x1 = x2}, and let U ′ = U ∩∆. By the dimension theorem for
X,U ′ is the union of irreducible components Ui of dimension at least dim(U)−1. By
Claim 6, F (Ui, w) is the union of irreducible closed sets F (Ui, wij), with (Ui, wij)
normal, and by Claim 7 they all have dimension ≥ dim(U)−1. Now by (ii) of Claim
5, and since each Ui ⊆ {x : x1 = x2}, (1, 2) ∈ dom(wij) for all i, j. If wij(1, 2) = 1,
then F (Ui, wij) is contained in F (U,w)∩∆∗. If v∗ ∈ F (U,w)∩∆∗, let v = jv∗, and
let i be such that v ∈ Ui; then defining wij = w′(v∗) as in the proof of Claim 6, we
see that v∗ ∈ F (Ui, wij) for some (i, j) such that wij(1, 2) = 1. Thus F (U,w) ∩∆∗

is the union of all the F (Ui, wij) with wij(1, 2) = 1. This finishes the proof.

Remark 10.2. An alternative proof of 10.1 is possible along the following lines.
Define X∗ as above. Consider X∗ as a structure whose basic relations are the
elements of G∗ (considered as binary relations on X∗) and the pullbacks via j of
the closed subsets of Xn. The subsets defined by positive atomic formulas (with
parameters) are called closed. One shows:

(∗) Let M,N be models of the theory T of X∗, A a substructure of M , and
f : A → N a homomorphism. Then f extends to a homomorphism from M into
some elementary extension of N . If f is 1-1, f extends to an isomorphism between
elementary extensions of M and of N .

From this it follows, by standard model-theoretic arguments, that T admits
quantifier elimination; and further that collection of closed sets is closed under
projections. In the proof of (∗) one notes:
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(∗∗) Suppose M,N,A are as in (∗), and f is compatible with an isomorphism
fX : XM → XN . Then f extends to an isomorphism of M and N , also compatible
with fX .

This shows that X∗ has Morley rank 1, and induces no new structure on X .
Finally, to prove the dimension theorem amounts to verifying:

(∗ ∗ ∗) Let h : A→ C be a homomorphism between finitely generated substruc-
tures of models of T . Suppose a1, a2 ∈ A and ha1 = ha2. Then there exists a
substructure B of a model of T , and homomorphisms h′ : A → B, h′′ : B → C,
such that h = h′′h′, and rk(B) ≥ rk(A)− 1.

Proof of Theorem C. Proposition 10.1 makes a variety of constructions possible, of
which we give one example. Let k be an algebraically closed field of characteristic
0. If C is a nonsingular curve over K, and f : C − F0 → C − F1 is a definable
bijection between two cofinite subsets of C, then f agrees (up to a finite number
of points) with a bijective morphism f∗ : C → C, an algebraic automorphism of
C. f∗ is uniquely determined by f . This gives a map from the group of definable
bijections of C to the group AutK(C) of automorphisms of C over K; the kernel is
the group of maps with finite support.

Let X be an elliptic curve with transcendental j-invariant, with a fixed zero
point p on X . Choose two independent generic elements a, b of X ; let ta, tb denote
the translation maps by a, b. Let G be the group of automorphisms of X generated
by ta, tb. So G is isomorphic to Z2. Let G∗ be the group generated formally by
elements Ta, Tb with the relations: [Ta, Tb]

2 = [Ta, [Ta, Tb]] = [Tb, [Ta, Tb]] = 1. Let
H be the subgroup generated by the commutator [Ta, Tb]. Then H is the 2-element
group, and we have a group homomorphism i : G∗ → G with kernel H, taking Ta
to ta, Tb to tb. Let X∗ be the Zariski geometry given by 10.1 for this data. We
claim that X∗ is not interpretable in any algebraically closed field.

Suppose X∗ is so interpretable, over some algebraically closed field K. Observe
that k is interpretable in X , hence in X∗, and so also in K. By [Po], since k is
interpretable in K, it is in K definably isomorphic to K. Thus X can be viewed
as an elliptic curve over K, and j : X∗ → X is a definable 2-1 map from some
definable set into X .
X∗ can be viewed as the union of (possibly incomplete) curves C1, . . . , Cm over

K, perhaps with a finite number of additional points added. If x is a generic point
of X , then j−1(x) must have a point from each Ci. Since the map j : X∗ → X is
2-1, we have m ≤ 2. If m = 2, then for generic x, j−1(x) has one point from C1 and
one from C2; since the element [Ta, Tb] of G∗ permutes j−1(x), it carries C1 to C2

(perhaps with finitely many points excepted). However the maps Ta and Tb must
either preserve C1, C2 or permute them (up to a finite number of points); in any
of the four possibilities, the commutator [Ta, Tb] leaves each of the two component
curves invariant. This contradiction shows that m = 1.

Thus X∗ can be identified with a single curve (up to a finite number of points);
we may take this curve C to be complete and nonsingular. By the remark on
nonsingular curves in the first paragraph, the action of G∗ on X∗ induces an action
of G on C by algebraic automorphisms. Since no non-identity element of G∗ fixes a
cofinite subset of X∗, this gives an embedding of G∗ into AutK(C). In particular,
AutK(C) is infinite. By [Ha], p. 305, it follows that C has genus ≤ 1. We also
have a rational map from C to X , so X has genus ≥ 1. Thus C has genus 1. It is
isogeneous to X , hence also has a transcendental j-invariant.
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By [Ha], p. 321, the subgroup H of AutK(C) fixing p has two elements, the
identity and the group inverse. The group AutK(C) has the structure of a semi-
direct product of W with an Abelian group A (the group of translations of C), with
W acting on A by inversion. It follows that any two elements of AutK(C) not of
order 2 lie inside A, and hence commute. In G∗ however, Ta, Tb do not have order
2, and do not commute. This contradicts the observation that G∗ embeds into
Aut(C), and shows that X∗ is not interpretable in an algebraically closed field.
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