Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

CAT$(-1)$-spaces, divergence groups and their commensurators


Authors: M. Burger and S. Mozes
Journal: J. Amer. Math. Soc. 9 (1996), 57-93
MSC (1991): Primary 22D40, 20E08, 22E40
DOI: https://doi.org/10.1090/S0894-0347-96-00196-8
MathSciNet review: 1325797
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [A'C-B] N. A'Campo and M. Burger, Réseaux arithmétiques et commensurateurs d'après G.A. Margulis, Invent. Math. 116 (1994), 1--25, CMP 94:05.
  • [Ad1] S. Adams, Boundary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups, Topology 33 (1994), 765--783, CMP 94:17.
  • [Ad2] ------, Reduction of cocycles with hyperbolic targets.
  • [Az] R. Azencott, Espaces de Poisson des groupes localement compacts, Lecture Notes in Math., vol. 148, Springer, Berlin and New York, 1970, MR 58:18748.
  • [B] W. Ballmann, Lectures on spaces of nonpositive curvature.
  • [B-G-S] W. Ballmann, M. Gromov, and V. Schroeder, Manifolds of nonpositive curvature, Progr. in Math., vol. 61, Birkhäuser, Boston, 1985.
  • [B-Br] W. Ballmann and M. Brin, Polygonal complexes and combinatorial group theory, Geom. Dedicata 50 (1994), 165--191, MR 95e:57004.
  • [Ba] H. Bass, Covering theory for graphs of groups, J. Pure Appl. Alg. 89 (1993), 3--47, MR 94j:20028.
  • [Ba-Ku] H. Bass and R. Kulkarni, Uniform tree lattices, J. Amer. Math. Soc. 3 (1990), 843--902, MR 91k:20034.
  • [Ba-Lu1] H. Bass and A. Lubotzky, Rigidity of group actions on locally finite trees, Proc. London Math. Soc. 64 (1994), 541--575, CMP 94:16.
  • [Ba-Lu2] ------, Tree lattices (In preparation).
  • [Be1] N. Benakli, Polyèdres à géométrie locale donnée, C.R. Acad. Sci. Paris Sér. I 313 (1991), 561--564, MR 92k:52018.
  • [Be2] ------, Polyèdres hyperboliques à groupe d'automorphisme non discret, C.R. Acad. Sci. Paris Sér. I 313 (1991), 667--669, MR 93b:57005.
  • [Ber-Ze] I.N. Bernstein and A.V. Zelevinski, Representations of the group GL$(n,F)$ where $F$ is a non-archimedean local field, Russian Math. Surveys 31 (3) (1976), 1--68, MR 54:12988.
  • [Bo] A. Borel, Linear algebraic groups, Springer, Berlin and New York, 1991, MR 92d:20001.
  • [Bo-Sp] A. Borel and T.A. Springer, Rationality properties of linear algebraic groups II, Tôhoku Math. J. 20 (1968), 443--497, MR 39:5576.
  • [Bo-Ti] A. Borel and J. Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55--150, MR 34:7527.
  • [Bou] M. Bourdon, Actions quasi-convexes d'un groupe hyperbolique, flot géodésique.
  • [Bow] B.H. Bowditch, Some results on the geometry of convex hulls in manifolds of pinched negative curvature, Comment. Math. Helv. 69 (1994), 49--81, MR 94m:53044.
  • [Bri-Ha] M. Bridson and A. Haefliger, Metric spaces of nonpositive curvature (In preparation).
  • [Co] M. Coornaert, Mesures de Patterson--Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993), 241--270, MR 94m:57075.
  • [Co-Pa1] M. Coornaert and A. Papadopoulos, Une dichotomie de Hopf pour les flots géodésiques associés aux groupes discrets d'isométries des arbres, Trans. Amer. Math. Soc. 343 (1994), 883--898, MR 94h:58131.
  • [Co-Pa2] ------, Récurrence de marches aléatoires et ergodicité du flot géodésique sur les graphes réguliers, Strasbourg, 1994.
  • [Da] M.W. Davis, Nonpositive curvature and reflection groups.
  • [Fu] H. Furstenberg, A Poisson formula for semisimple Lie groups, Ann. of Math. (2) 77 (1963), 335--383, MR 26:3820.
  • [Gh-H] E. Ghys and P. de la Harpe (eds.), Sur les groupes hyperboliques d'après Gromov, Progr. Math., vol. 83, Birkhäuser, Boston, 1990.
  • [Gr] M. Gromov, Hyperbolic groups, Essays in Group Theory (S.M. Gersten, ed.), MR 89e:20070.
  • [Hag] F. Haglund, Les polyèdres de Gromov.
  • [Ho1] E. Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig 91 (1933), 261--304.
  • [Ho2] E. Hopf, Ergodic theory and the geodesic flow on surfaces of constant negative curvature, Bull. Amer. Math. Soc. 77 (1971), 863--877, MR 44:1789.
  • [Ka] V. A. Kaimanovich, Ergodicity of harmonic invariant measures for the geodesic flow on hyperbolic spaces, J. Reine Angew. Math. 455 (1994), 57--103, CMP 95:01.
  • [Li] Y. Liu, Density of the commensurability group of uniform tree lattices, J. Algebra 165 (1994), 346--359, MR 95c:20036.
  • [L-M-Z] A. Lubotzky, S. Mozes, and R.J. Zimmer, Superrigidity of the commensurability group of tree lattices, Comment. Math. Helv. 69 (1994), 523--548, CMP 95:04.
  • [Ma] G.A. Margulis, Discrete subgroups of semisimple groups, Ergeb. Math. Grenzgeb. (3)17, Springer, Berlin and New York, 1991, MR 92h:22021.
  • [Mou] G. Moussong, Hyperbolic Coxeter groups.
  • [Ni] P.J. Nicholls, The ergodic theory of discrete groups, London Math. Soc. Lecture Notes, vol. 143, Cambridge Univ. Press, Cambridge and New York, 1989, MR 91i:58104.
  • [Pa] S.J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), 241--273, MR 56:8841.
  • [Re] H. Reiter, Classical harmonic analysis and locally compact groups, Oxford Univ. Press, London and New York, 1968, MR 46:5933.
  • [Se] J.-P. Serre, Trees, Springer, Berlin and New York, 1980, MR 82c:20083.
  • [Su] D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984), 259--277, MR 86c:58093.
  • [Ti1] J. Tits, Algebraic and abstract simple groups, Ann. of Math. (2) 80 (1964), 313--329, MR 29:2259.
  • [Ti2] ------, Sur le groupe des automorphismes d'un arbre, Essays on Topology and Related Topics: Memoires dédiés à Georges de Rham, Springer-Verlag, Berlin and New York, 1970, MR 45:8582.
  • [Va] N.Th. Varapoulos, Analysis and geometry on groups, Proc. Internat. Congr. Math. (Kyoto 1990), 951--957.
  • [Zi1] R. Zimmer, Curvature of leaves in amenable foliations, Amer. J. Math. 105 (1983), 1011--1022, MR 84k:58178.
  • [Zi2] ------, Amenable ergodic group actions and applications to Poisson boundaries of random walks, J. Funct. Anal. 27 (1978), 350--372, MR 57:12775.
  • [Zi3] ------, Ergodic theory and semisimple groups, Monographs in Math., vol. 81, Birk-
    häuser, Boston, 1984, MR 86j:22014.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 22D40, 20E08, 22E40

Retrieve articles in all journals with MSC (1991): 22D40, 20E08, 22E40


Additional Information

M. Burger
Affiliation: IMA, Université de Lausanne, Lausanne–Dorigny, Switzerland

S. Mozes
Affiliation: Department of Mathematics, Hebrew University, Jerusalem, Israel

DOI: https://doi.org/10.1090/S0894-0347-96-00196-8
Received by editor(s): November 18, 1993
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society