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A BILINEAR ESTIMATE WITH
APPLICATIONS TO THE KdV EQUATION

CARLOS E. KENIG, GUSTAVO PONCE, AND LUIS VEGA

1. Introduction

In this article we continue our study of the initial value problem (IVP) for the
Korteweg-de Vries (KdV) equation with data in the classical Sobolev space Hs(R).
Thus we consider

(1.1)

 ∂tu+ ∂3
xu+ ∂x

(
u2

2

)
= 0, t, x ∈ R,

u(x, 0) = u0(x),

where u0 ∈ Hs(R). Our principal aim here is to lower the best index s for which
one has local well posedness in Hs(R), i.e. existence, uniqueness, persistence and
continuous dependence on the data, for a finite time interval, whose size depends
on ‖u0‖Hs .

Equation in (1.1) was derived by Korteweg and de Vries [21] as a model for long
wave propagating in a channel. A large amount of work has been devoted to the
existence problem for the IVP (1.1). For instance, (see [9], [10]), the inverse scat-
tering method applies to this problem, and, under appropriate decay assumptions
on the data, several existence results have been established, see [5],[6],[14],[28],[33].
Another approach, inherited from hyperbolic problems, relies on the energy esti-
mates, and, in particular shows that (1.1) is locally well posed in Hs(R) for s > 3/2,
(see [2],[3],[12],[29],[30],[31]). Using these results and conservation laws, global (in
time) well posedness in Hs(R), s ≥ 2 was established, (see [3],[12],[30]). Also,
global in time weak solutions in the energy space H1(R) were constructed in [34].
In [13] and [22] a “local smoothing” effect for solutions of (1.1) was discovered.
This, combined with the conservation laws, was used in [13] and [22] to construct
global in time weak solutions with data in H1(R), and even in L2(R). In [16], we
introduced oscillatory integral techniques, to establish local well posedness of (1.1)
in Hs(R), s > 3/4, and hence, global (in time) well posedness in H1(R), s ≥ 1.
(In [16] we showed how to obtain the above mentioned result by Picard iteration in
an appropriate function space.) In [4] J. Bourgain introduced new function spaces,
adapted to the linear operator ∂t+∂

3
x, for which there are good “bilinear” estimates

for the nonlinear term ∂x(u2/2). Using these spaces, Bourgain was able to estab-
lish local well posedness of (1.1) in H0(R) = L2(R), and hence, by a conservation
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law, global well posedness in the same space. The method was first introduced by
Bourgain in order to obtain corresponding results in the spatially periodic setting
(see (1.2)). These were the first results in the periodic setting, for s ≤ 3/2.

Existence results for weak solutions to (1.1) corresponding to rougher data are
also in the literature. Using the inverse scattering method, T. Kappeler [14] showed
that if u0 is a real measure with appropriate decay at infinity, then (1.1) has a global
in time weak solution (see also [5], [6]). Also, Y. Tsutsumi [35] proved the existence
of a global, in time, weak solution for u0 any positive, finite measure. In [18]
we showed that (1.1) is locally well posed in Hs(R), for s > −5/8. Since finite
measures are in Hs(R), s < 1/2, this establishes (locally in time) the uniqueness
for finite measures. Our method of proof in [18] combined the ideas introduced by
Bourgain in [4], with some of the oscillatory integral estimates found in [16] and
[17]. This enabled us to extend the bilinear estimate in [18] for ∂x(u2/2) to the
Bourgain function spaces associated with the index s, for s > −5/8.

In the present paper, we reconsider this bilinear operator in these function spaces,
obtaining the best index s (−3/4) for which it is bounded. This allows us to obtain
the corresponding result for (1.1) in Hs(R), for s > −3/4. Since we also show
that our estimates for the bilinear operator are sharp, (except for the limiting case
s = −3/4 which remains open), our result concerning the local well posedness of
the IVP (1.1) is the optimal one provided by the method below.

The proof of the estimates for this bilinear operator is based on elementary
techniques. In fact, it is similar to those used by C. Fefferman and E. M. Stein
[7] to establish the L4/3(R2) restriction Fourier transform to the sphere and by
C. Fefferman [8] to obtain the L4(R2) estimate for the Bochner-Riesz operator.

These estimates extend to the periodic case. Thus we can give a simplified
proof of J. Bourgain [4] result concerning the local well-posedness of the periodic
boundary value problem (PBVP) for the KdV equation

(1.2)

 ∂tu+ ∂3
xu+ ∂x

(
u2

2

)
= 0, t ∈ R, x ∈ T,

u(x, 0) = u0(x).

There is an interesting parallel between the development of the results described
above and the recent works of S. Klainerman and M. Machedon, [19] and [20],
G. Ponce and T. Sideris [27] and H. Lindblad [23] on non-linear wave equations. In
fact, in [19] Klainerman and Machedon consider the IVP

(1.3)


∂2
tw

I −∆wI = N I(w,∇w), t ∈ R, x ∈ R3,

wI(x, 0) = f I(x) ∈ Hs(R3),

∂tw
I(x, 0) = gI(x) ∈ Hs−1(R3),

where w = wI is a vector valued function, and the nonlinear terms N I have the
form

(1.4) N I(w,∇w) =
∑
J,K

ΓIJ,K(w)BIJ,K(∇wJ ,∇wK),

where BIJ,K is any of the “null forms”

(1.5)
Q0(∇wJ ,∇wK) =

3∑
i=1

∂xiw
J∂xiw

K − ∂twJ∂twK ,

Qα,β(∇wJ ,∇wK) = ∂xαw
J∂xβw

K − ∂xβwJ∂xαwK ,
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with 0 ≤ α ≤ β ≤ 3, ∂x0 = ∂t and ΓIJ,K(w) is a polynomial in w. Such equations

arise in the study of “wave maps” (for Q0) and Yang-Mills systems in a Coulomb
gauge form for the general case.

The energy method establishes the local well posedness of (1.3) if s > 1 + 3/2.
For this result, the special form of the non-linear term is irrelevant. However, Klain-
erman and Machedon showed in [19], that for the special non-linearities in (1.5),
there is a local well posedness for s ≥ 2. This was done by studying the bilinear
operators Q0(∇φ,∇ψ) and Qα,β(∇φ,∇ψ) in (1.5), where φ, ψ are homogeneous
solutions to the linear wave equation, and then extended to the inhomogeneous
wave equation via Duhamel’s formula. Thus, in this context, the idea of establish-
ing bilinear estimates also appeared, simultaneously to Bourgain’s work [4]. Shortly
after the work [19], Ponce and Sideris [27] were able to show, using oscillatory in-
tegral estimates (the so called “Strichartz estimates” [32], see also [26]), that for
“any” quadratic non-linearity N I , one has local well posedness in (1.3), for s > 2.
Moreover, Lindblad [23] has shown that for general quadratic non-linearity N I , this
is sharp. Thus, to achieve s = 2, the null forms (1.5) are needed. Very recently,
Klainerman and Machedon [20], motivated by the results in [4], [18] and those in
the present paper, have established better estimates for Q0(∇φ,∇ψ), in function
spaces somewhat similar to those studied here, but adapted to the wave operator,
and have used this to show local well posedness for (1.3) for s > 3/2, when N I

involves only Q0. The exponent s = 3/2 is sharp.
To state our main results we recall the following definitions.

Definition 1.1 ([4]). For s, b ∈ R, Xs,b denotes the completion of the Schwartz
space S(R2) with respect to the norm

(1.6) ‖F‖Xs,b =

 ∞∫
−∞

∞∫
−∞

(1 + |τ − ξ3|)2b(1 + |ξ|)2s|F̂ (ξ, τ)|2dξdτ

1/2

.

Let Y be the space of all F such that
i) F : T× R→ C.
ii) F (x, ·) ∈ S(R) for each x ∈ T.
iii) x→ F (x, ·) is C∞.

iv) F̂ (0, τ) = 0 for all τ ∈ R.
For s, b ∈ R, Ys,b denotes the completion of Y with respect to the norm

(1.7) ‖F‖Ys,b =

∑
n6=0

∞∫
−∞

(1 + |τ − n3|)2b|n|2s|F̂ (n, τ)|2dτ

1/2

.

For F ∈ Xs,b (or F ∈ Ys,b) we define the bilinear operator

(1.8) B(F, F )(x, t) =
1

2
∂x(F 2(x, t)).

Our main results in this work are gathered in the following theorems.
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Theorem 1.1. Given s ∈ (−3/4, 0] there exists b ∈ (1/2, 1) such that

(1.9) ‖B(F, F )‖Xs,b−1
≤ c‖F‖2Xs,b .

Theorem 1.2. For s ∈ (−1/2, 0] and b = 1/2 it follows that

(1.10) ‖B(F, F )‖Ys,b−1
≤ c‖F‖2Ys,b.

Theorem 1.3. For any s < −3/4 and any b ∈ R the estimate (1.9) fails.

Theorem 1.4. For any s < −1/2 and any b ∈ R the estimate (1.10) fails.

As a consequence of the estimates (1.9)-(1.10) we obtain the following results
concerning the IVP (1.1) and the PBVP (1.2).

Theorem 1.5. Let s ∈ (−3/4, 0]. Then there exists b ∈ (1/2, 1) such that for any
u0 ∈ Hs(R) there exist T = T (‖u0‖Hs) > 0 (with T (ρ) → ∞ as ρ → 0) and a
unique solution u(t) of the IVP (1.1) in the time interval [−T, T ] satisfying

(1.11) u ∈ C([−T, T ] : Hs(R)),

(1.12) u ∈ Xs,b ⊆ Lpx,`oc(R : L2
t (R)), for 1 ≤ p ≤ ∞,

(1.13) ∂x(u2) ∈ Xs,b−1

and

(1.14) ∂tu ∈ Xs−3,b−1.

Moreover, for any T ′ ∈ (0, T ) there exists R = R(T ′) > 0 such that the map
ũ0 7→ ũ(t) from {ũ0 ∈ Hs(R) : ‖u0 − ũ0‖H−s < R} into the class defined by
(1.8)-(1.9) with T ′ instead of T is Lipschitz.

In addition, if u0 ∈ Hs′(R) with s′ > s, then the above results hold with s′ instead
of s in the same time interval [−T, T ].

Theorem 1.6. Let s ∈ (−1/2, 0]. Then for any u0 ∈ Hs(T) with û0(0) = 0 there
exist T = T (‖u0‖Hs) > 0 and a unique solution u(t) of the PBVP (1.2) in the time
interval [−T, T ] satisfying

(1.15) u ∈ C([−T, T ] : Hs(T)) ∩ Ys,b,

and

(1.16) ∂x(u2) ∈ Ys,b−1.

Moreover, for any T ′ ∈ (0, T ) there exists r = r(T ′) > 0 such that the map
ũ0 7→ ũ(t) from {ũ0 ∈ Hs(T) : ‖u0 − ũ0‖H−s < R} into the class defined by (1.12)
with T ′ instead of T is Lipschitz.

Once the key estimate (1.10) has been established, the proof of Theorem 1.6, as
well as its general version, i.e. for data u0 with arbitrary mean value, follows the
arguments in [4], therefore it will be omitted.
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Theorem 1.5 improves the results in [4], s ≥ 0, and that in [18], s > −5/8.
In these works the bounds of the bilinear operator (1.8) in the spaces Xs,b, were
based on several LpLq-estimates, i.e. Strichartz type [32], a sharp version of Kato
smoothing effect [13] found in [15], maximal functions and those obtained by inter-
polating these. As it was remarked above our proof is elementary. Indeed, it only
uses simple calculus arguments.

Theorem 1.6 was essentially proven in [4]. There the bound for the bilinear
operator (1.8) was based on the Zygmund result [36] concerning the restriction of
Fourier series in L4(T2). As in the continuous case our proof of this key estimate
is based on simple calculus inequalities.

It is interesting to compare the above result for the KdV equation with those
obtained, by different arguments, for the modified KdV (mKdV) equation

(1.17) ∂tv + ∂3
xv +

1

3
∂x(v3) = 0.

It was proven in [17] that s ≥ 1/4 suffices for the local well posedness of the
corresponding IVP of the mKdV in Hs(R). Similar result, with s > 1/2, for the
PBVP associated to (1.14) can be found in [4].

We will show that the method used here does not improve these results. More
precisely, let

(1.18) B̃(F, F, F )(x, t) =
1

3
∂x(F 3(x, t))

denote the tri-linear operator associated to the mKdV.

Theorem 1.7. For any s < 1/4 and any b ∈ R the estimate

(1.19) ‖B̃(F, F, F )‖Xs,b−1
≤ c‖F‖3Xs,b

fails.

Theorem 1.8. For any s < 1/2 and any b ∈ R the estimate

(1.20) ‖B̃(F, F, F )‖Ys,b−1
≤ c‖F‖3Ys,b

fails.

We observe that in both cases, the IVP and the PBVP, the difference between
the best Sobolev exponents known for the local well posedness of the KdV and the
mKdV is one. Heuristically, this is consistent with the Miura transformation [25]
which affirms that if v(·) solves the mKdV (1.14), then

(1.21) u = ci∂xv + v2

solves the KdV equation.
For the generalized KdV equation

(1.22) ∂tu+ ∂3
xu+

1

k + 1
∂x(uk+1) = 0, x, t ∈ R, k ∈ Z+,
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one has that if u(x, t) is a solution, then for any λ > 0

(1.23) uλ(x, t) = λ2/ku(λx, λ3t)

also solves (1.19). This scaling argument suggests the value sk = (k − 4)/2k as a
lower bound for the Sobolev exponent which guarantees the local well posedness
of the corresponding IVP. For higher nonlinearity, k ≥ 4, this lower bound was
achieved in [17]. Moreover, it was shown in [1] that this is the best possible result.
However, this is not always the case; the following example shows that the values
of the Sobolev exponent given by the scaling argument and the optimal one may
be different even for positive values. As before, consider the IVP for a type of
nonlinear wave equations

(1.24)


∂2
t ω −∆ω = (∂tω)j , t ∈ R, x ∈ R3, j = 1, 2, 3, . . . ,

ω(x, 0) = f(x) ∈ Hs(R3),

∂tω(x, 0) = g(x) ∈ Hs−1(R3).

The scaling argument suggests that (1.21) is locally well posed for s > s(j) =
(5j − 7)/(2j − 2). When j ≥ 3 this result, as well as its sharpness, was established
in [27]. For j = 2 it was proven in [27] that s > 2 is sufficient for the local existence
and in [23] that s ≥ 2 is necessary (see also [24]). Observe that in this case, j = 2,
s(2) = 3/2. As was noted before, in [20] it was shown that s > s(2) = 3/2 is
actually attained for the null form Q0 in (1.5).

This paper is organized as follows. Sections 2-4 are concerned with the non-
periodic case. Theorems 1.1 and 1.5 will be proven in Sections 2 and 3 respectively.
Section 4 contains the proof of Theorems 1.3, 1.7. The periodic case is considered
in Sections 5-6. Theorem 1.2 will be proven in Section 5, and Theorems 1.4, 1.8 in
Section 6.

2. Proof of Theorem 1.1

First we will rewrite the estimate (1.9) in an equivalent form. Defining

(2.1) ρ = −s ∈ [0, 3/4)

it follows from (1.6) that if F ∈ Xs,b = X−ρ,b, then

(2.2) f(ξ, τ) = (1 + |τ − ξ3|)b(1 + |ξ|)−ρ F̂ (ξ, τ) ∈ L2(R2)

and

(2.3) ‖f‖L2
ξL

2
τ

= ‖F‖Xs,b = ‖F‖X−ρ,b .

Using that

(2.4) ∂̂x(F 2)(ξ, τ) = c ξ(F̂ ∗ F̂ )(ξ, τ)
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we can rewrite (1.9) in terms of f as

(2.5)

‖B(F, F )‖Xs,b−1
= ‖(1 + |τ − ξ3|)b−1(1 + |ξ|)−ρ ∂̂x(F 2)‖L2

ξL
2
τ

= c‖(1 + |ρ− ξ3|)b−1(1 + |ξ|)−ρξ(F̂ ∗ F̂ )‖L2
ξL

2
τ

= c

∣∣∣∣∣∣∣∣ ξ

(1 + |τ − ξ3|)1−b(1 + |ξ|)ρ ×

∫∫
f(ξ1, τ1)(1 + |ξ1|)ρ

(1 + |τ1 − ξ3
1 |)b

f(ξ − ξ1, τ − τ1)(1 + |ξ − ξ1|)ρdξ1dτ1
(1 + |τ − τ1 − (ξ − ξ1)3|)b

∣∣∣∣∣∣∣∣
L2
ξL

2
τ

≤ c‖F‖2Xs,b = c‖f‖2L2
ξL

2
τ
.

Thus, Theorem 1.1 can be restated as follows.

Theorem 2.1. Given ρ = −s ∈ [0, 3/4) there exists b ∈ (1/2, 1) such that

(2.6)

∣∣∣∣∣∣∣∣ ξ

(1 + |τ − ξ3|)1−b(1 + |ξ|)ρ×

∫∫
f(ξ1, τ1)(1 + |ξ1|)ρ

(1 + |τ1 − ξ3
1 |)b

f(ξ − ξ1, τ − τ1)(1 + |ξ − ξ1|)ρ
(1 + |τ − τ1 − (ξ − ξ1)3|)b dξ1dτ1

∣∣∣∣∣∣∣∣
L2
ξL

2
τ

≤ c‖f‖2L2
ξL

2
τ
.

We will restrict ourselves to the most interesting cases of (2.6), ρ = 0, which
provides a simplified proof of the L2-result in [4], and ρ ∈ (1/2, 3/4). In fact we
will prove the following slightly stronger version of Theorem 2.1.

Theorem 2.2. Given ρ = −s ∈ (1/2, 3/4) there exists b ∈ (1/2, 1) such that for
any b′ ∈ (1/2, b] with b− b′ ≤ min{ρ− 1/2; 1/4− ρ/3} it follows that

(2.7)

∣∣∣∣∣∣∣∣ ξ

(1 + |τ − ξ3|)1−b(1 + |ξ|)ρ×

∫∫
f(ξ1, τ1)(1 + |ξ1|)ρ

(1 + |τ1 − ξ3
1 |)b

′
f(ξ − ξ1, τ − τ1)(1 + |ξ − ξ1|)ρ

(1 + |τ − τ1 − (ξ − ξ1)3|)b′ dξ1dτ1

∣∣∣∣∣∣∣∣
L2
ξL

2
τ

≤ c‖f‖2L2
ξL

2
τ
,

where the constant c depends on ρ, b and b− b′.
Moreover (2.7) still holds for ρ = 0, b ∈ (1/2, 3/4] and b′ ∈ (1/2, b].

We observe that (2.6) follows from (2.7) by taking b′ = b.
The following elementary calculus inequalities will provide the main tool in the

proof of Theorem 2.2.



580 C. E. KENIG, GUSTAVO PONCE, AND LUIS VEGA

Lemma 2.3. If ` > 1/2, then there exists c > 0 such that

(2.8)

∞∫
−∞

dx

(1 + |x− α|)2`(1 + |x− β|)2`
≤ c

(1 + |α− β|)2`
,

(2.9)

∞∫
−∞

dx

(1 + |x|)2`|
√
α− x |

≤ c

(1 + |α|)1/2
,

(2.10)

∞∫
−∞

dx

(1 + |x− α|)2(1−`)(1 + |x− β|)2`
≤ c

(1 + |α− β|)2(1−`)

and

(2.11)

∫
|x|≤β

dx

(1 + |x|)2(1−`)|
√
α− x |

≤ c (1 + β)2(`−1/2)

(1 + |α|)1/2
.

Next, using these calculus inequalities, we deduce three lemmas from which the
proof of Theorem 2.2 will follow directly.

Lemma 2.4. If b ∈ (1/2, 3/4] and b′ ∈ (1/2, b], then there exists c > 0 such that

(2.12)

|ξ|
(1 + |τ − ξ3|)1−b × ∞∫

−∞

∞∫
−∞

dτ1dξ1
(1 + |τ1 − ξ3

1 |)2b′(1 + |τ − τ1 − (ξ − ξ1)3|)2b′

1/2

≤ c.

Proof. Since b′ > 1/2, from (2.8) it follows that

(2.13)

∞∫
−∞

dτ1
(1 + |τ1 − ξ3

1 |)2b′(1 + |τ − τ1 − (ξ − ξ1)3|)2b′

≤ c

(1 + |τ − ξ3 + 3ξξ1(ξ − ξ1)|2b′) .

To integrate with respect to ξ1 we change variables

(2.14) µ = λ− ξ3 + 3ξξ1(ξ − ξ1), then dµ = 3ξ(ξ − 2ξ1)dξ1,

and

(2.15) ξ1 =
1

2

{
ξ ±

√
4τ − ξ3 − 4µ

3ξ

}
.
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Therefore

(2.16) |ξ(ξ − 2ξ1)| = c
√
|ξ| |
√

4τ − ξ3 − 4µ|

and

(2.17) dξ1 = c
dµ√

|ξ| |
√

4τ − ξ3 − 4µ|
.

Now combining these identities with (2.9) we find

(2.18)

∞∫
−∞

dξ1
(1 + |τ − ξ3 + 3ξξ1(ξ − ξ1)|)2b′

≤ c√
|ξ|

∞∫
−∞

dµ

(1 + |µ|)2b′ |
√

4τ − ξ3 − 4µ|
≤ c

|ξ|1/2(1 + |4τ − ξ3|)1/2
.

Thus the term in (2.10) is bounded by

(2.19)
c|ξ|3/4

(1 + |τ − ξ3|)1−b
1

(1 + |4τ − ξ3|)1/4
.

It is easy to check that the expression in (2.17) is bounded whenever b ≤ 3/4.

Lemma 2.5. If ρ = −s ∈ (1/2, 3/4), b ∈ (1/2, 3/4+s/3] and b′ ∈ (1
2 , b], then there

exists c > 0 such that

(2.20)

|ξ|
(1 + |τ − ξ3|)1−b(1 + |ξ|)ρ ×

∫∫
A

|ξ1(ξ − ξ1)|2ρ
(1 + |τ1 − ξ3

1 |)2b′(1 + |τ − τ1 − (ξ − ξ1)3|)2b′
dτ1dξ1

1/2

< c,

where A = A(ξ, τ) is defined as

(2.21)

A =

{
(ξ1, τ1) ∈ R2 | |ξ1| ≥ 1, |ξ − ξ1| ≥ 1,

|τ − τ1 − (ξ − ξ1)3| ≤ |τ1 − ξ3
1 | ≤ |τ − ξ3|

}
.

Proof. First we observe that in A

(2.22) |τ − ξ3 + 3ξξ1(ξ − ξ1)| = |τ1 − ξ1 + τ − τ1 − (ξ − ξ1)3| ≤ 2|τ − ξ|3.

Thus, by (2.8)

(2.23)

∫
dτ1

(1 + |τ1 − ξ3
1 |)2b′(1 + |τ − τ1 − (ξ − ξ1)3|)2b′

≤ χ((τ − ξ3 + 3ξξ1(ξ − ξ1))/2(τ − ξ3))

(1 + |τ − ξ3 + 3ξξ1(ξ − ξ1)|)2b′
,
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where χ(·) denotes the characteristic function of the interval [−1, 1].
As in the previous Lemma we use the change of variable

(2.24) µ = τ − ξ3 + 3ξξ1(ξ − ξ1).

Thus (2.14)-(2.17), (2.23) and (2.29) lead to the inequalities

(2.25)

∫∫
A

|ξ1(ξ − ξ1)|2ρ
(1 + |τ1 − ξ3

1 |)2b′(1 + |τ − τ1 − (ξ − ξ1)3|)2b′
dξ1dτ1

≤ c
∫ |ξ1(ξ − ξ1)|2ρχ((τ − ξ3 + 3ξξ1(ξ − ξ1))/2(τ − ξ3))

(1 + |τ − ξ3 + 3ξξ1(ξ − ξ1)|)2b′
dξ1

≤ c
∫

|µ|≤2|τ−ξ3|

|τ − ξ3 − µ|2ρ

|ξ|2ρ+1/2(1 + |µ|)2b′ |
√

4τ − ξ3 − 4µ|
dµ

≤ c

|ξ|2ρ+1/2

|τ − ξ3|2ρ
(1 + |4τ − ξ3|)1/2

.

Hence the expression

(2.26) φ(ξ, τ) =
c|ξ|3/4−ρ
(1 + |ξ|)ρ

(1 + |τ − ξ3|)ρ+b−1

(1 + |4τ − ξ3|)1/4

bounds the term in (2.20). From the assumptions on ρ = −s and b one has that

(2.27) φ ∈ L∞(R2),

which completes the proof.

Lemma 2.6. If ρ = −s ∈ (1/2, 3/4), b ∈ (1/2, 1) and b′ ∈ (1/2, b] with b − b′ ≤
min{ρ− 1/2; 1/4− ρ/3}, then there exists c > 0 such that

(2.28)

1

(1 + |τ1 − ξ3
1 |)b

′ ×

∫∫
B

|ξ|2(1−ρ)|ξξ1(ξ − ξ1)|2ρ dτdξ
(1 + |ξ|)2ρ(1 + |τ − ξ3|)2(1−b)(1 + |τ − τ1 − (ξ − ξ1)3|)2b′

1/2

≤ c,

where B = B(ξ1, τ1) is defined as

(2.29)

B =

{
(ξ, τ) ∈ R2

∣∣ |ξ − ξ1| ≥ 1, |ξ1| ≥ 1,

|τ − τ1 − (ξ − ξ1)3| ≤ |τ1 − ξ3
1 |, |τ − ξ3| ≤ |τ1 − ξ3

1 |
}
.
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Proof. First we observe that in B

(2.30) |τ1 − ξ3
1 + 3ξξ1(ξ − ξ1)| = |τ − ξ3 − (τ − τ1 − (ξ − ξ1)3)| ≤ 2|τ1 − ξ3

1 |.

By (2.10) it follows that

(2.31)

∫
dτ

(1 + |τ − ξ3|)2(1−b)(1 + |τ − τ1 − (ξ − ξ1)3|)2b′

≤ c

(1 + |τ1 − ξ3
1 + 3ξξ1(ξ − ξ1)|)2(1−b) .

Thus to obtain (2.28) it suffices to bound

(2.32)

I(D) =
1

(1 + |τ1 − ξ3
1 |)b

′ × ∫
D

|ξ|2(1−ρ)|ξξ1(ξ − ξ1)|2ρ
(1 + |ξ|)2ρ(1 + |τ1 − ξ3

1 + 3ξξ1(ξ − ξ1)|)2(1−b) dξ

1/2

with D = B′ = B′(ξ1, τ1), where

(2.33)

B′ =

{
ξ ∈ R

∣∣ 1 ≤ |ξ − ξ1|, 1 ≤ |ξ1|, |τ − ξ3| ≤ |τ1 − ξ3
1 |

|τ1 − ξ3
1 + 3ξξ1(ξ − ξ1)| ≤ 2|τ1 − ξ3

1 |
}
.

We split B′ into two subdomains B′1 and B′2, where

(2.34) B′1 =

{
ξ ∈ B′

∣∣ 3|ξξ1(ξ − ξ1)| ≤ 1

2
|τ1 − ξ3

1 |
}

and

(2.35) B′2 =

{
ξ ∈ B′

∣∣ 1

2
|τ1 − ξ3

1 | ≤ 3|ξξ1(ξ − ξ1)| ≤ 3|τ1 − ξ3
1 |
}
.

In B′1 we have that

(2.36)
1

2
|τ1 − ξ3

1 | ≤ |τ1 − ξ3
1 + 3ξξ1(ξ − ξ1)|

and

(2.37) |ξ| ≤ 1

6
|τ1 − ξ3

1 |.

Hence

(2.38)
I(B′1) ≤ c

(1 + |τ1 − ξ3
1 |)1−ρ+b′−b

 ∫
|ξ|≤|τ1−ξ3

1 |

|ξ|2(1−ρ)

(1 + |ξ|)2ρ
dξ


1/2

≤ c(1 + |τ1 − ξ3
1 |)1/2−ρ−b′+b

which is bounded since, by hypothesis, 1/2− ρ− b′ + b ≤ 0.
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To bound I(B′2) we split B′2 into three parts, B′2,1, B′2,2 and B′2,3.
First we have

(2.39) B′2,1 =

{
ξ ∈ B′2

∣∣ 1

4
|ξ| ≤ |ξ1| ≤ 100|ξ|

}
.

In this domain one has

(2.40) c(1 + |τ1 − ξ3
1 |) ≤ |ξ1|3 ∼ |ξ|3.

Combining (2.35), the hypothesis ρ > 1/2, a change of variable similar to that
in (2.14)-(2.17), µ1 = τ1 − ξ3

1 + 3ξξ1(ξ − ξ1), and (2.9) it follows that

(2.41)

I(B′2,1) ≤ c(1 + |τ1 − ξ3
1 |)ρ−b

′+(1−2s)/3× ∫
|µ1|≤2|τ1−ξ3

1 |

dξ

(1 + |τ1 − ξ3
1 + 3ξξ1(ξ − ξ1)|)2(1−b)


1/2

≤ c(1 + |τ1 − ξ3
1 |)ρ/3−b

′+1/3 × 1

|ξ|1/4
∫

|µ1|<2|τ1−ξ3
1|

1

(1 + |µ1|)2(1−b)
dµ1∣∣ √4τ1 − ξ3

1 − 4µ1

∣∣


1/2

≤ c (1 + |τ1 − ξ3
1 |)ρ/3−1/4+b−b′

(1 + |4τ1 − ξ3
1 |)1/4

,

which is bounded since, by hypothesis, ρ/3− 1/4 + b− b′ ≤ 0.
Next we consider

(2.42) B′2,2 =

{
ξ ∈ B′2

∣∣ 1 ≤ |ξ1| ≤ |ξ|/4
}
.

In this domain one has that

(2.43) |ξ1 − 2ξ| ∼ |ξ| ∼ |ξ − ξ1|

and

(2.44) c−1(1 + |τ1 − ξ3
1 |) ≤ |ξξ1(ξ − ξ1)| ∼ |ξ|2|ξ1| ≤ c|ξ|3.

Therefore (2.44), the change of variable µ1 = λ1 − ξ3
1 + 3ξξ1(ξ − ξ1) and (2.11)

give the inequalities

(2.45 )

I(B′2,2) ≤ c

(1 + |τ1 − ξ3
1 |)b

′ × ∫
|µ1|≤3|τ1−ξ3

1 |

|ξ|2(1−2ρ)|ξξ1(ξ − ξ1)|2ρ
|ξ1|1/2(1 + |τ1 − ξ3

1 |)1/2(1 + |µ1|)2(1−b) dµ1


1/2

≤ c(1 + |τ1 − ξ3
1 |)θ,
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where

(2.46) θ = −b′ + 1/4 + (1− 2ρ)/3 + ρ+ b− 1/2 = ρ/3− 5/12 + b− b′ ≤ 0

by using our hypothesis on ρ, b and b′. Hence I(B′2,2) is bounded.
Finally we have

(2.47) B′2,3 =

{
ξ ∈ B′2

∣∣ 100|ξ| ≤ |ξ1|
}
.

In this case one has that

(2.48) |ξ1 − 2ξ| ∼ |ξ1 − ξ| ∼ |ξ1|, |τ1 − ξ3
1 | << |ξ1|3

and

(2.49) |4τ1 − ξ3
1 | ∼ |ξ3

1 |.

Thus a familiar argument shows that

(2.50)

I(B′2,3) ≤ c(1 + |τ1 − ξ3
1 |)ρ−b

′ × 1

|ξ1|1/2
∫

|µ1|≤3|τ1−ξ3
1 |

1

(1 + |µ1|)2(1−b)
dµ1∣∣√4τ1 − ξ3

1 − 4µ1

∣∣


1/2

≤ c(1 + |τ1 − ξ3
1 |)ρ−5/6−b′+b,

which is bounded. This completes the proof of (2.28).

Proof of Theorem 2.2. First we consider the case s = 0. Using Cauchy-Schwarz
inequality, (2.12) and Fubini’s theorem it follows that

(2.51)

∥∥∥∥ ξ

(1 + |τ − ξ3|)1−b

∫∫
f(ξ1, τ1)

(1 + |τ1 − ξ3
1 |)b

′
f(ξ − ξ1, τ − τ1)dξ1dτ1

(1 + |τ − τ1 − (ξ − ξ1)3|)b′
∥∥∥∥
L2
ξL

2
τ

≤
∥∥∥∥ ξ

(1 + |τ − ξ3|)1−b×(∫∫
dξ1dτ1

(1 + |τ1 − ξ3
1 |)2b′(1 + |τ − τ1 − (ξ − ξ1)3|)2b′

)1/2
∥∥∥∥∥
L∞ξ L

∞
τ∥∥∥∥∥

(∫∫
|f(ξ1, τ1)|2 |f(ξ − ξ1, τ − τ1)|2 dξ1dτ1

)1/2
∥∥∥∥∥
L2
ξL

2
τ

≤ c‖f‖2L2
ξL

2
τ
,

for any b′ ∈ (1/2, b]. Taking b′ = b we obtain the result.
Next we turn to the case ρ = −s ∈ (1/2, 3/4). Note that if

(2.52) either |ξ1| ≤ 1 or |ξ − ξ1| ≤ 1,
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we have

(2.53) (1 + |ξ1|)ρ(1 + |ξ − ξ1|)ρ ≤ c(1 + |ξ|)ρ,

which reduces the estimate to the case ρ = 0. Thus, we can assume

(2.54) |ξ1| ≥ 1 and |ξ − ξ1| ≥ 1.

By symmetry we can also assume

(2.55) |τ − τ1 − (ξ − ξ1)3| ≤ |τ1 − ξ3
1 |.

We split the region of integration in (2.7) into two parts

(2.56) |τ1 − ξ3
1 | ≤ |τ − ξ3| and |τ − ξ3| ≤ |τ1 − ξ3

1 |.

For the first part we use Cauchy-Schwarz and (2.20) as in (2.51) to obtain the
same bound. For the second part we use duality, Cauchy-Schwarz and (2.28) to
conclude the proof.

We observe that Theorem 2.2 is equivalent to the following result.

Corollary 2.7. Given s ∈ (−3/4,−1/2) there exists b ∈ (1/2, 1) such that for any
b′ ∈ (1/2, b] with b− b′ ≤ min{−s− 1/2; 1/4 + s/3}

(2.57) ‖B(F, F )‖Xs,b−1
≤ c‖F‖2Xs,b′ .

Moreover (2.57) still holds for s = 0, b ∈ (1/2, 3/4] and b′ ∈ (1/2, b].

3. Proof of Theorem 1.4

We will denote by {W (t)}∞−∞ the unitary group describing the solution of the
linear IVP associated to (1.1):

(3.1)

{
∂tu+ ∂3

xu = 0, t, x ∈ R,
u(x, 0) = u0(x),

where

(3.2) u(x, t) = W (t)u0(x) = St ∗ u0(x)

with St(·) defined by the oscillatory integral

(3.3) St(x) = c

∞∫
−∞

eixξeitξ
3

dξ.

We will also use the notation

(3.4) ‖f‖LpxLqt =

 ∞∫
−∞

 ∞∫
−∞

|f(x, t)|qdt

p/q

dx


1/q

,
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(3.5) Ĵsh(ξ) = (1 + |ξ|)s ĥ(ξ) , D̂s
xh(ξ) = |ξ|s ĥ(ξ)

and

(3.6) Λ̂bg(τ) = (1 + |τ |)b ĝ(τ) , D̂b
tg(τ) = |τ |b ĝ(τ).

The relationship between the spaces Xs,b in (1.6) and the group {W (t)}∞−∞ in
(3.2) is described by the identity

(3.7) ‖F‖Xs,b = ‖ΛbJsW (t)F‖L2
ξL

2
τ
.

Hence, if F ∈ Xs,b then

(3.8)
F = F (x, t) =

(
(1 + |ξ|)−s(1 + |τ − ξ3|)−b f̂(ξ, τ)

)∨
=
(

(1 + |ξ|)−s f̂b(ξ, τ)
)∨

with f ∈ L2(R2). From the sharp version of the Kato smoothing effect [13] found
in [15], i.e.

(3.9) ‖DxW (t)v0‖L∞x L2
t
≤ c‖v0‖L2,

it follows that for b > 1/2

(3.10) Dθ
xfb ∈ L2/(1−θ)

x L2
t , for θ ∈ [0, 1].

In particular, this implies that for s ∈ (−1, 0)

(3.11) F ∈ Cα`oc(R : L2
t (R)) with α ∈ (0, 1 + s).

Lemma 3.1. If F ∈ Xs,b with s ∈ (−1, 0) and b > 1/2, then

(3.12) F ∈ Cα`oc(R : L2
t (R)) ⊆ Lpx,loc(R : L2

t (R))

for 1 ≤ p ≤ ∞, and α ∈ (0, 1 + s).

Let ψ ∈ C∞0 (R) with ψ ≡ 1 on [−1, 1] and supp ψ ⊆ (−2, 2). We recall the
following results proven in [18].

Lemma 3.2. If s ≤ 0 and b ∈ (1/2, 1], then for δ ∈ (0, 1)

(3.13) ‖ψ(δ−1t)W (t)v0‖Xs,b ≤ c δ(1−2b)/2‖v0‖Hs ,

(3.14) ‖ψ(δ−1t)F‖Xs,b ≤ c δ(1−2b)/2‖F‖Xs,b,

(3.15)

∥∥∥∥∥∥ψ(δ−1t)

t∫
0

W (t− t′)F (t′)dt′

∥∥∥∥∥∥
Xs,b

≤ c δ(1−2b)/2‖F‖Xs,b−1
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and

(3.16)

∥∥∥∥∥∥ψ(δ−1t)

t∫
0

W (t− t′)F (t′)dt′

∥∥∥∥∥∥
Hs

≤ c δ(1−2b)/2‖F‖Xs,b−1
.

Proof. For (3.13)-(3.15) see Lemmas 3.1-3.3 in [18]. The proof of (3.16) follows the
same argument used in [18] to obtain (3.15).

Proof of Theorem 1.5. First we observe that if u(·) is a solution of the IVP (1.1),
then for any λ > 0

(3.17) uλ(x, t) = λ2u(λx, λ3t)

also satisfies the KdV equation with data

(3.18) uλ(x, 0) = λ2u0(λx).

Thus for s ≤ 0

(3.19) ‖uλ(·, 0)‖Hs = 0(λ3/2+s) as λ→ 0.

In our case s ∈ (−3/4, 0], hence, without loss of generality, we can restrict ourselves
to considering the IVP (1.1) with data u0(x) satisfying

(3.20) ‖u0‖Hs = r << 1,

i.e., r arbitrary small; see (3.24) below.
For u0 ∈ Hs(R), s ∈ (−3/4, 0], satisfying (3.20) we define the operator

(3.21) Φu0(ω) = Φ(ω) = ψ(t)W (t)u0 −
ψ(t)

2

t∫
0

W (t− t′)ψ2(t′)∂x(ω2(t′))dt′.

We shall prove that Φ(·) defines a contraction on

(3.22) B(2c r) =

{
ω ∈ Xs,b | ‖ω‖Xs,b ≤ 2c r

}
.

First combining (3.13)-(3.15) and (1.9) (Theorem 1.1) it follows that for ω ∈ B2cr

(3.23)
‖Φ(ω)‖Xs,b ≤ cr + c‖∂x(ψ(t)ω(·, t))2‖Xs,b−1

≤ cr + c‖ψω‖2Xs,b
≤ cr + c‖ω‖2Xs,b ≤ cr + c(2cr)2 ≤ 2cr

for r in (3.20) satisfying

(3.24) 4c2r ≤ 1.
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Similarly using (3.14)-(3.15), (1.9) and (3.24) it follows that for ω, ω̃ ∈ B(2cr)

(3.25)

‖Φ(ω)− Φ(ω̃)‖Xs,b

=
1

2

∥∥∥∥∥∥ψ(t)

t∫
0

W (t− t′)ψ2(t′) ∂x(ω2 − ω̃2)(t′)dt′

∥∥∥∥∥∥
Xs,b

≤ c‖ω + ω̃‖Xs,b‖ω − ω̃‖Xs,b ≤ 2c2r ‖ω − ω̃‖Xs,b

≤ 1

2
‖ω − ω̃‖Xs,b .

Thus Φ(·) is a contraction. Therefore there exists a unique u ∈ B(2cr) such that

(3.26) u(t) = ψ(t)

W (t)u0 −
1

2

t∫
0

W (t− t′)∂x(ψ(t′)u(t′))2dt′

 .

Hence, in the time interval [−1, 1], u(·) solves the integral equation associated to
the IVP (1.1).

Now we turn to the proof of the persistence property, i.e.

(3.27) u ∈ C([−1, 1] : Hs(R))

and the continuous dependence of the solution upon the data in the norm of the
space in (3.27). Combining (3.7) and Hölder and Sobolev inequalities we obtain

(3.28)

‖ψ(ρ−1·)u‖Xs,0 = ‖Js(ψ(ρ−1·)u)‖L2
tL

2
x

= ‖W (t)(ψ(ρ−1·)Jsu)‖L2
tL

2
x

= ‖ψ(ρ−1·)W (t)Jsu‖L2
xL

2
t

≤ cρ1/4‖ψ(ρ−1·)W (t)Jsu‖L2
xL

4
t

≤ cρ1/4‖D1/4
t (ψ(ρ−1·)W (t)Jsu)‖L2

xL
2
t

= cρ1/4‖ψ(ρ−1·)u‖Xs,1/2

≤ cρ1/4‖ψ(ρ−1·)u‖Xs,b .

Thus, by Hölder’s inequality, (3.14) and (3.28), for 0 < b ≤ b′ we find that

(3.29)

‖ψ(ρ−1·)u‖Xs,b′ ≤ ‖ψ(ρ−1·)u‖(b−b
′)/2

Xs,0
‖ψ(ρ−1·)u‖b

′/b
Xs,b

≤ c ρ(b−b′)/8‖ψ
(
ρ−1·

)
u‖Xs,b ≤ c ρ(b−b′)/8∣∣∣∣u∣∣∣∣

Xs,b
.

Using the integral equation (3.26), (2.57) with some fixed b′ < b, (3.14), (3.16)
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and (3.29), for 0 ≤ t̃ < t ≤ 1 and t− t̃ ≤ ∆t it follows that

(3.30)

‖u(t)− u(t̃)‖Hs ≤ ‖W (t− t̃)u(t̃)− u(t̃)‖Hs

+ c

∥∥∥∥∥∥
t∫
t̃

W (t− t′)ψ2

(
t′ − t̃
∆t

)
∂x(u2(t′))dt′

∥∥∥∥∥∥
Hs

≤ ‖W (t− t̃)u(t̃)− u(t̃)‖Hs + c

∥∥∥∥∂x(ψ2

(
· − t̃
∆t

)
u2

)∥∥∥∥
Xs,b−1

≤ ‖W (t− t̃)u(t̃)− u(t̃)‖Hs + c

∥∥∥∥ψ( · − t̃∆t

)
u

∥∥∥∥2

Xs,b′

≤ ‖W (t− t̃)u(t̃)− u(t̃)‖Hs + c(∆t)(b−b′)/4‖u‖2Xs,b = o(1)

as ∆t → 0, which yields the persistence property. The proof of the continuous
dependence of the solution upon the data in the L∞([0, 1] : Hs(R))-norm follows a
similar argument, therefore it will be omitted.

Finally we explain how to extend the uniqueness result in B(2cr) in (3.22) to the
whole Xs,b. For any δ ∈ (0, 1) we define

(3.31) B(2cδ(1−2b)/2r) =

{
ω ∈ Xs,b

∣∣ ‖ω‖Xs,b ≤ 2cδ(1−2b)/2r

}
and
(3.32)

Φδ,u0(ω) = Φδ(ω) = ψ(δ−1t)W (t)u0 −
ψ(δ−1t)

2

t∫
0

W (t− t′)ψ2(t′)∂x(ω2(t′))dt′.

Combining (2.57) with b′ ∈ (1
2 , b) such that

(3.33) b− b′ = min{−s− 1/2; 1/4 + s/3}

with the arguments in (3.23) and (3.29) one has

(3.34) ‖Φδ(ω)‖Xs,b ≤ c δ(1−2b)/2r + 4c3δ3(1−2b)/2δ(b−b′)/4r2,

and

(3.35) ‖Φδ(ω)− Φδ(ω̃)‖Xs,b ≤ 2c3δ(1−2b)δ(b−b′)/4r‖ω − ω̃‖Xs,b .

By (3.33) it follows that

(3.36) 1− 2b+ (b− b′)/4 < 0,

therefore for any δ ∈ (0, 1)

(3.37) Φδ(B(2cδ(1−2b)/2r)) ⊆ B(2cδ(1−2b)/2r)

is a contraction, which completes the proof.
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4. Proof of Theorems 1.3 and 1.7

Proof of Theorem 1.3. Using the notation in (2.1)-(2.5), one sees that (1.9) is equiv-
alent to

(4.1)

∣∣∣∣∣∣∣∣ ξ

(1 + |τ − ξ3|)1−b(1 + |ξ|)ρ ×

∫∫
f(ξ1, τ1)(1 + |ξ1|)ρ

(1 + |τ1 − ξ3
1 |)b

f(ξ − ξ1, τ − τ1)(1 + |ξ − ξ1|)ρdξ1dτ1
(1 + |τ − τ1 − (ξ − ξ1)3|)b

∣∣∣∣∣∣∣∣
L2
ξL

2
τ

≤ c ‖f‖2L2
ξL

2
τ
.

First we shall see that if ρ = −s > 3/4, then b ≤ 1/2.
Fix N ∈ Z+ and take

(4.2) f(ξ, τ) = χ
A

(ξ, τ) + χ−A(ξ, τ),

where χ
A

(·) represents the characteristic function of the set A with

(4.3) A =

{
(ξ, τ) ∈ R2

∣∣ N ≤ ξ ≤ N +
1√
N
, |τ − ξ3| ≤ 1

}
and

(4.4) −A =

{
(ξ, τ) ∈ R2| − (ξ, τ) ∈ A

}
.

Clearly

(4.5) ‖f‖L2
ξL

2
τ
≤ c N− 1

4 .

On the other hand, A contains a rectangle with (N,N3) as a vertex, with di-
mensions 10−2N−2 ×N3/2 and longest side pointing in the (1, 3N2) direction.

Therefore

(4.6) |(f ∗ f)(ξ, τ)| ≥ c√
N
χR(ξ, τ),

where R is the rectangle centered at the origin of dimensions cN−2 × N
3
2 and

longest side pointing in the (1, 3N2) direction. Hence (4.1) implies that

(4.7) N2ρN−
1
2N

3
2 (b−1)N−

1
2N

1
4 ≤ c N− 1

2 ,

i.e.

(4.8) b+ 4ρ ≤ 3

2

as desired.
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To complete the proof we just need to show that if ρ = −s > 3/4 then b > 1/2.
By polarization and duality (4.1) is equivalent to the following inequality:

(4.9)

∣∣∣∣∣∣∣∣ (1 + |ξ1|)ρ
(1 + |τ1 − ξ3

1 |)b
×

∫∫ |ξ|
(1 + |ξ|)s

g(ξ, τ)

(1 + |τ − ξ3|)1−b
h(ξ − ξ1, τ − τ1)(1 + |ξ − ξ1|)s

(1 + |τ − τ1 − (ξ − ξ1)3|)b dξdτ

∣∣∣∣∣∣∣∣
L2
ξ1
L2
τ1

≤ c ‖g‖L2
ξL

2
τ
‖h‖L2

ξL
2
τ
.

We take

(4.10) g(ξ, τ) = χ
A

(ξ, τ), (A defined in (4.3))

and

(4.11) h(ξ, τ) = χB (ξ, τ),

where

(4.12) B =

{
(ξ, τ) ∈ R2 | −N + 1/2

√
N ≤ ξ ≤ −N + 3/4

√
N ; |τ − ξ3| < 1

}
.

Estimating the first norm in (4.9) in the domain

(4.13) |4τ1 − ξ3
1 | ≤

1

4
and ξ1 ∈

[
N − 1

20

1√
N
, N − 1

10

1√
N

]
from (4.9) we see that

(4.14)
Nρ+1/4

N3b
≤ N−1/2,

i.e. if ρ = −s > 3/4

(4.15)
3

2
< ρ+

3

4
≤ 3b.

Proof of Theorem 1.7. We consider the case b = 1/2, and remark that a similar
argument to that used in the previous proof shows that this assumption does not
imply a loss of generality.

First we take F (·, ·) such that

(4.16) F̂ (ξ, τ) = χA(ξ, τ) + χ−A(ξ, τ),

where A was defined in (4.3). Thus

(4.17)
∣∣(F̂ ∗ F̂ ∗ F̂ )(ξ, τ)

∣∣ ≥ c√
N

∣∣(χ
A
∗ χR)(ξ, τ)

∣∣,
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where R represents the rectangle centered at the origin of dimension 10−2N−2 ×
N3/2 and with its longest side pointing in the (1, 3N2) direction.

Then

(4.18)
∣∣(F̂ ∗ F̂ ∗ F̂ )(ξ, τ)

∣∣ ≥ c

N
χR0

(ξ, τ),

where R0 is a rectangle like R, of the same dimensions and direction, but with
(N,N3) as one of its vertices. Hence

(4.19) ‖B̃(F, F, F )‖Xs,b−1
≥ cNs−1/4.

Since

(4.20) ‖F‖Xs,b ≤ cNs−1/4,

(1.18) implies that s ≥ 1/4, which completes the proof.

5. Proof of Theorem 1.2

First we rewrite the inequality (1.10). Defining

(5.1) ρ = −s ∈ [0, 1/2)

by (1.7) it follows that if F ∈ Ys,b = Y−ρ,b, then

(5.2) f(n, τ) = (1 + |τ − n3|)b|n|−ρF̂ (n, τ) ∈ L2
τ (R : `2n(T))

and

(5.3) ‖f‖L2
τ`

2
n

= ‖F‖Y−ρ,b .

Since

(5.4) ∂̂x(F 2)(n, τ) = c n (F̂ ∗ F̂ )(n, τ)

we can express (1.10) in terms of f as

(5.5)

‖B(F, F )‖Ys,b−1,0
= ‖(1 + |τ − n3|)b−1|n|−ρ∂̂x(F 2)(n, τ)‖L2

τ `
2
n

= c ‖(1 + |τ − n3|)b−1|n|−ρn(F̂ ∗ F̂ )(n, τ)‖L2
τ `

2
n

=

(∑
n6=0

∞∫
−∞

|n|2
(1 + |τ − n3|)2(1−b)|n|2ρ×∣∣∣∣ ∑

n1 6=n
n1 6=0

∞∫
−∞

|n1(n− n1)|ρ
(1 + |τ1 − n3

1|)1/2
×

f(n1, τ1)

(1 + |τ1 − n3
1|)1/2

f(n− n1, τ − τ1)dτ1
(1 + |τ − τ1 − (n− n1)3|)1/2

∣∣∣∣2)1/2

= ‖B(f, f)(n, τ)‖L2
τ`

2
n
≤ c
(∑
n6=0

∞∫
−∞

|f(n, τ)|2dτ
)

= c‖f‖2L2
τ`

2
n
.

As in the continuous case we first need some calculus results.
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Lemma 5.1. There exists c > 0 such that for any n 6= 0 and any τ ∈ R

(5.6)
∑
n1 6=0
n1 6=n

log(2 + |τ − nn1(n− n1)|)
1 + |τ − nn1(n− n1)| < c.

Proof. Since n 6= 0 it suffices to show that

(5.7)

∣∣∣∣∣∣∣∣ ∑
n1 6=0
n1 6=n

1

(1 + |µ− n1(n− n1)|)3/4

∣∣∣∣∣∣∣∣
L∞µ `

∞
n

< c.

Let α, β be the roots of the equation

(5.8) µ− n1(n− n1) = 0,

i.e.

(5.9) µ− n1(n− n1) = (n1 − α)(n1 − β), with α = α(n, µ), β = β(n, µ).

We shall prove that

(5.10)

∣∣∣∣∣∣∣∣∑
n1

1

(1 + |(n1 − α)(n1 − β)|)3/4

∣∣∣∣∣∣∣∣
L∞α L

∞
β

< c,

which implies (5.7).

Notice that for a fixed (α, β) ∈ R2 there exist at most 8 n1’s such that

(5.11) |n1 − α| ≤ 2 or |n1 − β| ≤ 2.

For the remaining n1’s one has that

(5.12) 1 + |n1 − α| |n1 − β| ≥
1

2
(1 + |n1 − α|)(1 + |n1 − β|),

hence∑
n1

1

(1 + |(n1 − α)(n1 − β)|)3/4
≤ 8 +

∑
|n1−α|≥2

|n1−β|≥2

1

(1 + |(n1 − α)(n1 − β)|)3/4

≤ 8 +

 ∑
|n1−α|≥2

1

(1 + |n1 − α|)3/2

1/2 ∑
|n1−β|≥2

1

(1 + |n1 − β|)3/2

1/2

< c,

which yields the lemma.
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Lemma 5.2. If ρ = −s ∈ [0, 1/2], then

(5.13)

n

(1 + |τ − n3|)1/2

1

|n|ρ×∑
n1∈A

∫
A

|n1(n− n1)|2ρ
(1 + |τ1 − n3

1|)(1 + |τ − τ1 − (n− n1)3|)dτ1

1/2

< c,

where

(5.14)

A = A(n, τ) =

{
(n1, τ1) ∈ Z× R

∣∣ n1 6= 0, n1 6= n,

|τ − τ1 − (n− n1)3| ≤ |τ1 − n3
1| ≤ |τ − n|

}
.

Proof. It suffices to prove (5.13) for s = 0 and s = −1/2. The general case follows
by the Three Lines Theorem. As in [4] we shall use the identity

(5.15) τ − n3 − (τ1 − n3
1)− (τ − τ1 − (n− n1)3) = 3nn1(n− n1),

which implies that

(5.16) max
{
|τ − n3|; |τ1 − n3

1|; |τ − τ1 − (n− n1)3|
}
≥ |nn1(n− n1)|.

Case s = 0. Combining (5.16) and the definition of A it follows that

(5.17) |τ − n3| ≥ |nn1(n− n1)| ≥ n2/2.

Hence we only have to show that

(5.18)
∑
n1∈A

∞∫
−∞

dτ1
(1 + |τ1 − n3

1|)(1 + |τ − τ1 − (n− n1)3|) < c.

Changing variable

(5.19) θ = τ1 − n3
1

and using the notation

(5.20) a = τ − n3 + 3nn1(n− n1)

we find that

(5.21)

∞∫
−∞

dτ1
(1 + |τ1 − n3

1|)(1 + |τ − τ1 − (n− n1)3|)

=

∞∫
−∞

dθ

(1 + |θ|)(1 + |θ − a|) ≤
c log(2 + |a|)

1 + |a| .

Inserting (5.21) into (5.18) and using Lemma 5.1 we complete the proof.
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Case ρ = −s = 1/2. In this case we have that in A

(5.22) (1 + |τ − n3|)1/2 ≥ |n|1/2|n1(n− n1)|1/2.

Therefore the proof reduces to the previous case.

Lemma 5.3. If ρ = −s ∈ [0, 1/2], then

(5.23)

1

(1 + |τ1 − n3
1|)1/2

×

∑
n∈D

∫
D

|n|2(1−2ρ)|nn1(n− n1)|2ρ dτ

(1 + |τ − n3|)(1 + |τ − τ1 − (n− n1)3|)

1/2

< c,

where

(5.24)

D = D(n1, τ1) =

{
(n, τ) ∈ Z× R

∣∣ n 6= n1,

|τ − n3| ≤ |τ1 − n3
1|, |τ − τ1 − (n− n1)3| ≤ |τ1 − n3

1|
}
.

Proof. As in the previous case it suffices to consider the cases s = 0 and s = −1/2.

Case s = 0. From the definition of D and the relations (5.15)-(5.16) it follows that

(5.25) |τ1 − n3
1| ≥ n2/2.

Hence the proof reduces to that in Lemma 5.2, case s = 0.

Case ρ = −s = 1/2. Since

(5.26) (1 + |τ1 − n3
1|)1/2 ≥ |n|1/2|n1(n− n1)|1/2

the numerator in the integrand in (5.23) cancels the expression outside the paren-
theses. Hence the proof follows the argument in the previous case.

Proof of Theorem 1.2. Using (5.2)-(5.3), and the Cauchy-Schwarz inequality we
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write

(5.27)

‖B(F, F )‖Ys,b−1
= ‖B(f, f)‖L2

τ`
2
n

=

(∑
n6=0

∞∫
−∞

n2

(1 + |τ − n3|)
1

|n|2ρ×∣∣∣∣ ∑
n1 6=n
n1 6=0

∞∫
−∞

|n1(n− n1)|ρf(n1, τ1)f(n− n1, τ − τ1)

(1 + |τ1 − n2
1|)1/2(1 + |τ − τ1 − (n− n1)3|)1/2

dτ1

∣∣∣∣2dτ)1/2

≤
(∑
n6=0

∞∫
−∞

n2

(1 + |τ − n3|)
1

|n|2ρ×

( ∑
n1 6=n
n1 6=0

∞∫
−∞

|n1(n− n1)|2ρ
(1 + |τ1 − n3

1|)(1 + |τ − τ1 − (n− n1)3| dτ1
)

( ∑
n1 6=n
n1 6=0

∞∫
−∞

∣∣f(n1, τ1)f(n− n1, τ − τ1)
∣∣2dτ1)dτ)1/2

≤
∣∣∣∣∣∣∣∣ n

(1 + |τ − n3|)1/2

1

|n|ρ×( ∑
n1 6=0
n1 6=n

∞∫
−∞

|n1(n− n1)|2ρ
(1 + |τ1 − n3

1|)(1 + |τ − τ1 − (n− n1)3|)dτ1
)1/2∣∣∣∣∣∣∣∣

L∞τ `
∞
n(∑

n6=0

∑
n1 6=n
n1 6=0

∫∫
|f(n1, τ1)|2|f(n− n1, τ − τ1)|2dτ1dτ

)1/2

= Ψ‖f‖2L2
τ`

2
n
.

To complete the proof we just need to show that Ψ, defined above, is bounded.
But this follows by combining Lemmas 5.2 and 5.3, using duality and symmetry
arguments.

6. Proof of Theorems 1.4, 1.8

We recall the notation introduced in (5.5)

(6.1)

Bρ,b(f, f)(n, τ) =
n

(1 + |τ − n3|)1−b
1

|n|ρ×∑
n1 6=0
n1 6=n

∞∫
−∞

|n1(n− n1)|ρf(n1, τ1)f(n− n1, τ − τ1)

(1 + |τ1 − n3
1|)b(1 + |τ − τ1 − (n− n1)3|)b dτ1.

First we shall see that the condition

(6.2) b =
1

2

is necessary for the boundedness of Bρ,b(f, f).
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Lemma 6.1. If there exists ρ ∈ R such that for any f ∈ L2
τ`

2
n

(6.3) ‖Bρ,b(f, f)‖L2
τ`

2
n
≤ c ‖f‖2L2

τ`
2
n
,

then

(6.4) b =
1

2
.

Proof. Choose

(6.5) f(n, τ) = an χ1/2
(τ − n3),

where

(6.6) an =

{
1, n = 1, N − 1,

0, elsewhere,

and

(6.7) χ
θ
(x) =

{
1, |x| < θ,

0, elsewhere.

We evaluate Bρ,b(f, f)(n, τ) at n = N and bound it below by

(6.8)
N

(1 + |τ −N3|)1−b

for those τ ’s for which there is a τ1 interval of size larger than a fixed positive
constant such that

(6.9) |τ1 − 1| ≤ 1

2
and |τ − τ1 − (N − 1)3| ≤ 1

2
.

Assuming that

(6.10) |τ1 − 1| ≤ 1

4
and |τ − τ1 −N3 + 1 + 3N(N − 1)| < 1

2

we have that (6.9) holds and

(6.11) |τ −N3| ∼ N2.

Hence, (6.3) implies that

(6.12)
N

N2(1−b) ≤ c for any N ∈ Z+

and consequently

(6.13) b ≤ 1/2.
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To see that b ≥ 1/2 we note that polarization and duality show that if (6.3)

holds, then a similar inequality must hold for B̃ρ,b(·, ·), where

(6.14)

B̃ρ,b(f, f)(n1, τ1) =
1

(1 + |τ1 − n3
1|)b
×

∑
n 6=0
n 6=n1

∞∫
−∞

|n| f(n, τ)

(1 + |τ − n3|)1−b |n|ρ
|n1(n− n1)|ρ f(n− n1, τ − τ1)

(1 + |τ − τ1 − (n− n1)3|)b dτ,

i.e., (6.3) is equivalent to

(6.15) ‖B̃ρ,b(f, f)‖L2
τ1
`2n1
≤ c ‖f‖2L2

τ`
2
n
.

We choose

(6.16) f(n, τ) = bnχ1/2
(τ − n3),

where

(6.17) bn =

{
1, n = N − 1, N,

0, elsewhere,

and we evaluate B̃ρ,b(f, f)(n1, τ1) at n1 = 1 and bound it below by

(6.18)
N

(1 + |τ1 − 1|)b

for those τ1’s for which there is a τ interval of size larger than a fixed positive
constant such that

(6.19) |τ −N3| ≤ 1

2
and |τ − τ1 − (N − 1)3| ≤ 1

2
.

Clearly (6.19) holds in an interval of τ1’s of length larger than 1
2 in which

(6.20) |τ1 − 1| ∼ N2.

Hence (6.15) implies that

(6.21)
N

N2b
≤ c for any N ∈ Z+

and consequently

(6.22) b ≥ 1

2
,

which completes the proof.

Proof of Theorem 1.4. By Lemma 6.1, it suffices to see that (6.3) with b = 1/2 fails
for ρ = −s > 1/2.
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We choose

(6.23) f(n, τ) = anχ1
(τ − n3),

where

(6.24) an =

{
1, n = N/2,

0, elsewhere.

We evaluate Bρ,1/2(f, f)(n, τ) at n = N and bound it below by

(6.25)
N

(1 + |τ −N3|)1/2

1

Ns
N2s

for those τ ’s for which in a unit size interval of τ1’s we have

(6.26) |τ1 − (N/2)3| ≤ 1 and |τ − τ1 − (N/2)3| ≤ 1.

Assuming that

(6.27) |τ1 − (N/2)3| ≤ 1

2
and |τ − 2(N/2)3| ≤ 1

it follows that (6.26) is satisfied. Moreover

(6.28) |τ −N3/4| ≤ 1

2
implies |τ −N3| ∼ N3.

Hence

(6.29)
N

N3/2
Nρ ≤ c for any N ∈ Z+.

Therefore

(6.30) ρ ≤ 1

2
.

Proof of Theorem 1.8. Using the notation in (6.1) we define
(6.31)

B3(f, f, f)(n, τ) =
n

(1 + |τ − n3|)1−b
1

(1 + |n|)ρ×

∑
n2 6=n

∑
n1 6=n2
n1 6=0

∞∫
−∞

∞∫
−∞

f(n1, τ1)(1 + |n1|)ρ
(1 + |τ1 − n3

1|)b
f(n2 − n1, τ2 − τ1)(1 + |n2 − n1|)ρ

(1 + |τ2 − τ1 − (n2 − n1)3|)b ×

f(n− n2, τ − τ2)(1 + |n− n2|)ρ
(1 + |τ − τ1 − (n− n2)3|)b dτ1dτ2.
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Thus to obtain (1.19) it suffices to show that

(6.32) ‖B3(f, g, h)‖L2
τ`

2
n
≤ c ‖f‖L2

τ`
2
n
‖g‖L2

τ`
2
n
‖h‖L2

τ`
2
n

fails for any ρ = −s > 1/2.
An argument similar to that used in the proof of Lemma 1 allows us to restrict

ourselves to the case

(6.33) b =
1

2
.

We now choose

(6.34) f = anχ1/4
(τ − n3), g = bnχ1/4

(τ − n3), h = dnχ1/4
(τ − n3),

where

(6.35) an =

{
1, n = N,

0, elsewhere,
bn =

{
1, n = −N + 1,

0, elsewhere,
dn =

{
1, n = N − 1,

0, elsewhere.

Performing the addition and integration in (6.31) in the n1, τ1 variables respec-
tively we find

(6.36)

∑
n1

an1bn2−n1N
2ρ

∫
χ

1/4
(τ1 − n3

1)χ
1/4

(τ2 − τ1 − (n2 − n1)3)dτ1

∼= c
∑
n1

an1bn2−n1N
2ρχ

1/2
(τ2 − n3

2 + 3n2n1(n2 − n1))

∼= c αn2N
2ρχ

1/2
(τ2 − 1− 3N(N − 1)),

where

(6.37) αn2 =

{
1, n2 = 1,

0, elsewhere.

Now performing the operations in the n2, τ2 variables we get

(6.38)
N3ρ

∑
n2

dn−n2αn2

∫
χ

1/2
(τ2 − 1− 3N(N − 1))χ

1/4
(τ − τ2 − (N − 1)3)dτ2

= c N3ρχ(τ −N3).

By inserting this computation in (6.32) it follows that

(6.39) N
N3ρ

Nρ
≤ c for any N ∈ Z+.

Hence

(6.40) 2ρ+ 1 ≤ 0, i.e. s = −ρ ≥ 1

2
.
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31. A. Sjöberg, On the Korteweg-de Vries equation: existence and uniqueness, J. Math. Anal.
Appl. 29 (1970), 569–579. MR 53:13885

32. R. S. Strichartz, Restriction of Fourier transforms to quadratic surface and decay of solutions
of wave equations, Duke Math. J. 44 (1977), 705-714. MR 58:23577

33. S. Tanaka, Korteweg-de Vries equation: construction of solutions in terms of scattering data,
Osaka J. Math. 11 (1974), 49–59. MR 50:5231
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