Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

Fractional Power Series and Pairings
on Drinfeld Modules


Author: Bjorn Poonen
Journal: J. Amer. Math. Soc. 9 (1996), 783-812
MSC (1991): Primary 13J05; Secondary 11G09
MathSciNet review: 1333295
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $C$ be an algebraically closed field containing ${{\Bbb F}_q} $ which is complete with respect to an absolute value $|\;|$. We prove that under suitable constraints on the coefficients, the series $f(z) = \sum _{n \in {\Bbb Z} } a_n z^{q^n}$ converges to a surjective, open, continuous ${{\Bbb F}_q} $-linear homomorphism $C \rightarrow C$ whose kernel is locally compact. We characterize the locally compact sub-${{\Bbb F}_q} $-vector spaces $G$ of $C$ which occur as kernels of such series, and describe the extent to which $G$ determines the series. We develop a theory of Newton polygons for these series which lets us compute the Haar measure of the set of zeros of $f$ of a given valuation, given the valuations of the coefficients. The ``adjoint'' series $f^\ast (z) = \sum _{n \in {\Bbb Z} } a_n^{1/q^n} z^{1/q^n}$ converges everywhere if and only if $f$ does, and in this case there is a natural bilinear pairing

\begin{displaymath}\ker f \times \ker f^\ast \rightarrow {{\Bbb F}_q} % \end{displaymath}

which exhibits $\ker f^\ast $ as the Pontryagin dual of $\ker f$. Many of these results extend to non-linear fractional power series. We apply these results to construct a Drinfeld module analogue of the Weil pairing, and to describe the topological module structure of the kernel of the adjoint exponential of a Drinfeld module.


References [Enhancements On Off] (What's this?)

  • 1. Yvette Amice, Les nombres 𝑝-adiques, Presses Universitaires de France, Paris, 1975 (French). Préface de Ch. Pisot; Collection SUP: Le Mathématicien, No. 14. MR 0447195
  • 2. David L. Armacost, The structure of locally compact abelian groups, Monographs and Textbooks in Pure and Applied Mathematics, vol. 68, Marcel Dekker, Inc., New York, 1981. MR 637201
  • 3. Emil Artin, Algebraic numbers and algebraic functions. I, Institute for Mathematics and Mechanics, New York University, New York, 1951. MR 0045767
  • 4. Pierre Deligne and Dale Husemoller, Survey of Drinfel′d modules, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 25–91. MR 902591, 10.1090/conm/067/902591
  • 5. Martin Eichler, Introduction to the theory of algebraic numbers and functions, Translated from the German by George Striker. Pure and Applied Mathematics, Vol. 23, Academic Press, New York-London, 1966. MR 0209258
  • 6. N. Elkies: Linearized algebra and finite groups of Lie type, preprint, 1994.
  • 7. Joe Flood, Pontryagin duality for topological modules, Proc. Amer. Math. Soc. 75 (1979), no. 2, 329–333. MR 532161, 10.1090/S0002-9939-1979-0532161-7
  • 8. Catherine Goldstein (ed.), Séminaire de Théorie des Nombres, Paris 1988–1989, Progress in Mathematics, vol. 91, Birkhäuser Boston, Inc., Boston, MA, 1990. Papers from the seminar held in Paris, 1988–1989. MR 1104695
  • 9. Irving Glicksberg, Uniform boundedness for groups, Canad. J. Math. 14 (1962), 269–276. MR 0155923
  • 10. D. Goss: The adjoint of the Carlitz module and Fermat's Last Theorem, preprint, 1994.
  • 11. E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944. MR 0010757
  • 12. Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. I, Pure and Applied Mathematics, vol. 100, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. Elementary theory. MR 719020
  • 13. Kneser, M.: Algebraische Zahlentheorie, Vorlesungsausarbeitung Georg-August-Universität Göttingen, 1966.
  • 14. Neal Koblitz, 𝑝-adic numbers, 𝑝-adic analysis, and zeta-functions, 2nd ed., Graduate Texts in Mathematics, vol. 58, Springer-Verlag, New York, 1984. MR 754003
  • 15. Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344
  • 16. J. Neukirch: Algebraische Zahlentheorie, Springer-Verlag, 1992.
  • 17. Ø. Ore: On a Special Class of Polynomials, Trans. Amer. Math. Soc. 35 (1933), 559--584.
  • 18. Yuichiro Taguchi, Semi-simplicity of the Galois representations attached to Drinfel′d modules over fields of “infinite characteristics”, J. Number Theory 44 (1993), no. 3, 292–314. MR 1233291, 10.1006/jnth.1993.1055
  • 19. André Weil, Basic number theory, 3rd ed., Springer-Verlag, New York-Berlin, 1974. Die Grundlehren der Mathematischen Wissenschaften, Band 144. MR 0427267

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 13J05, 11G09

Retrieve articles in all journals with MSC (1991): 13J05, 11G09


Additional Information

Bjorn Poonen
Affiliation: Mathematical Sciences Research Institute, Berkeley, California 94720-5070
Address at time of publication: Department of Mathematics, Princeton University, Princeton, New Jersey 08544-1000
Email: poonen@msri.org, poonen@math.princeton.edu

DOI: http://dx.doi.org/10.1090/S0894-0347-96-00203-2
Keywords: Fractional power series, Pontryagin duality, Newton polygon, Weil pairing, Drinfeld module
Received by editor(s): December 9, 1994
Received by editor(s) in revised form: May 22, 1995
Additional Notes: This research was supported by a Sloan Doctoral Dissertation Fellowship.
Article copyright: © Copyright 1996 American Mathematical Society