On the geometric and topological rigidity

of hyperbolic 3-manifolds

Author:
David Gabai

Journal:
J. Amer. Math. Soc. **10** (1997), 37-74

MSC (1991):
Primary 57M50

MathSciNet review:
1354958

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[A]**Michael T. Anderson,*Complete minimal varieties in hyperbolic space*, Invent. Math.**69**(1982), no. 3, 477–494. MR**679768**, 10.1007/BF01389365**[BS]**F. Bonahon and L. Siebenmann,*to appear*.**[EM]**D. B. A. Epstein and A. Marden,*Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces*, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 113–253. MR**903852****[F]**Werner Fenchel,*Elementary geometry in hyperbolic space*, de Gruyter Studies in Mathematics, vol. 11, Walter de Gruyter & Co., Berlin, 1989. With an editorial by Heinz Bauer. MR**1004006****[FH]**M. H. Freedman and He, personal communication.**[FJ]**F. T. Farrell and L. E. Jones,*A topological analogue of Mostow’s rigidity theorem*, J. Amer. Math. Soc.**2**(1989), no. 2, 257–370. MR**973309**, 10.1090/S0894-0347-1989-0973309-4**[G1]**David Gabai,*Foliations and the topology of 3-manifolds*, J. Differential Geom.**18**(1983), no. 3, 445–503. MR**723813****[G2]**David Gabai,*Foliations and 3-manifolds*, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 609–619. MR**1159248****[G3]**David Gabai,*Homotopy hyperbolic 3-manifolds are virtually hyperbolic*, J. Amer. Math. Soc.**7**(1994), no. 1, 193–198. MR**1205445**, 10.1090/S0894-0347-1994-1205445-3**[GO]**David Gabai and Ulrich Oertel,*Essential laminations in 3-manifolds*, Ann. of Math. (2)**130**(1989), no. 1, 41–73. MR**1005607**, 10.2307/1971476**[Gr]**Michael Gromov,*Hyperbolic manifolds (according to Thurston and Jørgensen)*, Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math., vol. 842, Springer, Berlin-New York, 1981, pp. 40–53. MR**636516****[GS]**Robert Gulliver and Peter Scott,*Least area surfaces can have excess triple points*, Topology**26**(1987), no. 3, 345–359. MR**899054**, 10.1016/0040-9383(87)90006-1**[HS]**Joel Hass and Peter Scott,*The existence of least area surfaces in 3-manifolds*, Trans. Amer. Math. Soc.**310**(1988), no. 1, 87–114. MR**965747**, 10.1090/S0002-9947-1988-0965747-6**[Ki]**J. M. Kister,*Isotopies in 3-manifolds*, Trans. Amer. Math. Soc.**97**(1960), 213–224. MR**0120628**, 10.1090/S0002-9947-1960-0120628-5**[L1]**Urs Lang,*Quasi-minimizing surfaces in hyperbolic space*, Math. Z.**210**(1992), no. 4, 581–592. MR**1175723**, 10.1007/BF02571815**[L2]**Urs Lang,*The existence of complete minimizing hypersurfaces in hyperbolic manifolds*, Internat. J. Math.**6**(1995), no. 1, 45–58. MR**1307303**, 10.1142/S0129167X95000055**[MSY]**William Meeks III, Leon Simon, and Shing Tung Yau,*Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature*, Ann. of Math. (2)**116**(1982), no. 3, 621–659. MR**678484**, 10.2307/2007026**[Me]**Robert Meyerhoff,*A lower bound for the volume of hyperbolic 3-manifolds*, Canad. J. Math.**39**(1987), no. 5, 1038–1056. MR**918586**, 10.4153/CJM-1987-053-6**[Mo]**G. D. Mostow,*Quasi-conformal mappings in 𝑛-space and the rigidity of hyperbolic space forms*, Inst. Hautes Études Sci. Publ. Math.**34**(1968), 53–104. MR**0236383****[Mor]**Charles B. Morrey Jr.,*The problem of Plateau on a Riemannian manifold*, Ann. of Math. (2)**49**(1948), 807–851. MR**0027137****[Mu]**James Munkres,*Obstructions to the smoothing of piecewise-differentiable homeomorphisms*, Ann. of Math. (2)**72**(1960), 521–554. MR**0121804****[Ne]**M. H. A. Neumann, Quart. J. Math.**2**(1931), 1-8.**[S]**Richard Schoen,*Estimates for stable minimal surfaces in three-dimensional manifolds*, Seminar on minimal submanifolds, Ann. of Math. Stud., vol. 103, Princeton Univ. Press, Princeton, NJ, 1983, pp. 111–126. MR**795231****[Th]**William P. Thurston,*Three-dimensional manifolds, Kleinian groups and hyperbolic geometry*, Bull. Amer. Math. Soc. (N.S.)**6**(1982), no. 3, 357–381. MR**648524**, 10.1090/S0273-0979-1982-15003-0**[W]**Friedhelm Waldhausen,*On irreducible 3-manifolds which are sufficiently large*, Ann. of Math. (2)**87**(1968), 56–88. MR**0224099****[We]**J. Weeks,*SnapPea*, undistributed version.

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (1991):
57M50

Retrieve articles in all journals with MSC (1991): 57M50

Additional Information

**David Gabai**

Affiliation:
Department of Mathematics, California Institute of Technology, Pasadena, California 91125

Email:
Gabai@cco.caltech.edu

DOI:
https://doi.org/10.1090/S0894-0347-97-00206-3

Received by editor(s):
October 1, 1993

Received by editor(s) in revised form:
September 1, 1995

Additional Notes:
Partially supported by NSF Grants DMS-8902343, DMS-9200584, DMS-9505253 and SERC grant GR/H60851.

Article copyright:
© Copyright 1997
American Mathematical Society