Singularities of theta divisors and the birational geometry of irregular varieties
Authors:
Lawrence Ein and Robert Lazarsfeld
Journal:
J. Amer. Math. Soc. 10 (1997), 243258
MSC (1991):
Primary 14K25, 14J99, 32J27
MathSciNet review:
1396893
Fulltext PDF Free Access
References 
Similar Articles 
Additional Information
 [AM]
A.
Andreotti and A.
L. Mayer, On period relations for abelian integrals on algebraic
curves, Ann. Scuola Norm. Sup. Pisa (3) 21 (1967),
189–238. MR 0220740
(36 #3792)
 [AD]
Enrico
Arbarello and Corrado
De Concini, Another proof of a conjecture of S. P. Novikov on
periods of abelian integrals on Riemann surfaces, Duke Math. J.
54 (1987), no. 1, 163–178. MR 885782
(88i:14025), http://dx.doi.org/10.1215/S0012709487054123
 [De]
J.P. Demailly, vanishing theorems for positive line bundles and adjunction theory (to appear).
 [GL1]
Mark
Green and Robert
Lazarsfeld, Deformation theory, generic vanishing theorems, and
some conjectures of Enriques, Catanese and Beauville, Invent. Math.
90 (1987), no. 2, 389–407. MR 910207
(89b:32025), http://dx.doi.org/10.1007/BF01388711
 [GL2]
Mark
Green and Robert
Lazarsfeld, Higher obstructions to deforming
cohomology groups of line bundles, J. Amer.
Math. Soc. 4 (1991), no. 1, 87–103. MR 1076513
(92i:32021), http://dx.doi.org/10.1090/S08940347199110765131
 [Ka]
Yujiro
Kawamata, Characterization of abelian varieties, Compositio
Math. 43 (1981), no. 2, 253–276. MR 622451
(83j:14029)
 [KMM]
Yujiro
Kawamata, Katsumi
Matsuda, and Kenji
Matsuki, Introduction to the minimal model problem, Algebraic
geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10,
NorthHolland, Amsterdam, 1987, pp. 283–360. MR 946243
(89e:14015)
 [KV]
Yujiro
Kawamata and Eckart
Viehweg, On a characterization of an abelian variety in the
classification theory of algebraic varieties, Compositio Math.
41 (1980), no. 3, 355–359. MR 589087
(82c:14028)
 [K]
George
Kempf, On the geometry of a theorem of Riemann, Ann. of Math.
(2) 98 (1973), 178–185. MR 0349687
(50 #2180)
 [Kol1]
János
Kollár, Higher direct images of dualizing sheaves. I,
Ann. of Math. (2) 123 (1986), no. 1, 11–42. MR 825838
(87c:14038), http://dx.doi.org/10.2307/1971351
 [Kol2]
János
Kollár, Shafarevich maps and plurigenera of algebraic
varieties, Invent. Math. 113 (1993), no. 1,
177–215. MR 1223229
(94m:14018), http://dx.doi.org/10.1007/BF01244307
 [Kol3]
János
Kollár, Shafarevich maps and automorphic forms, M. B.
Porter Lectures, Princeton University Press, Princeton, NJ, 1995. MR 1341589
(96i:14016)
 [Kol4]
, Singularities of pairs (to appear).
 [LB]
Herbert
Lange and Christina
Birkenhake, Complex abelian varieties, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], vol. 302, SpringerVerlag, Berlin, 1992. MR 1217487
(94j:14001)
 [Mori]
Shigefumi
Mori, Classification of higherdimensional varieties,
Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos.
Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987,
pp. 269–331. MR 927961
(89a:14040)
 [Muk]
Shigeru
Mukai, Duality between 𝐷(𝑋) and
𝐷(𝑋) with its application to Picard sheaves, Nagoya
Math. J. 81 (1981), 153–175. MR 607081
(82f:14036)
 [Nak]
M. Nakamaye, Reducibility of principally polarized abelian varieties with highly singular polarization (to appear).
 [SV]
R. Smith and R. Varley, Multiplicity points on theta divisors, Duke Math. Jour. 82 (1996), 319326. CMP 96:12
 [Var]
J.
Varouchas, Sur l’image d’une variété
kählérienne compacte, Fonctions de plusieurs variables
complexes, V (Paris, 1979–1985) Lecture Notes in Math.,
vol. 1188, Springer, Berlin, 1986, pp. 245–259 (French). MR 926290
(89d:32064), http://dx.doi.org/10.1007/BFb0076826
 [Z]
Qi Zhang, Global holomorphic oneforms and Euler characteristics on projective manifolds with ample canonical bundles (to appear).
 [AM]
 A. Andreotti and A. Mayer, On period relations for abelian integrals on algebraic curves, Ann. Scuola Norm. Sup. Pisa 21 (1967), 189238. MR 36:3792
 [AD]
 E. Arbarello and C. DeConcini, Another proof of a conjecture of S. P. Novikov on periods of abelian integrals on Riemann surfaces, Duke Math. J. 54 (1987), 163178. MR 88i:14025
 [De]
 J.P. Demailly, vanishing theorems for positive line bundles and adjunction theory (to appear).
 [GL1]
 M. Green and R. Lazarsfeld, Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville, Invent. Math. 90 (1987), 389407. MR 89b:32025
 [GL2]
 , Higher obstructions to deforming cohomology groups of line bundles, Jour. of A.M.S. 4 (1991), 87103. MR 92i:32021
 [Ka]
 Y. Kawamata, Characterization of abelian varieties, Comp. Math. 43 (1981), 253276. MR 83j:14029
 [KMM]
 Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model program, Adv. Study in Pure Math. 10 (1987), 283360. MR 89e:14015
 [KV]
 Y. Kawamata and E. Viehweg, On a characterization of abelian varieties in the classification theory of algebraic varieties, Comp. Math. 41 (1981), 355360. MR 82c:14028
 [K]
 G. Kempf, On the geometry of a theorem of Riemann, Ann. of Math. 98 (1973), 178185. MR 50:2180
 [Kol1]
 J. Kollár, Higher direct images of dualizing sheaves, I, Ann. of Math 123 (1986), 1142. MR 87c:14038
 [Kol2]
 , Shafarevich maps and plurigenera of algebraic varieties, Invent. Math. 113 (1993), 177215. MR 94m:14018
 [Kol3]
 , Shafarevich Maps and Automorphic Forms, Princeton Univ. Press, 1995. MR 96i:14016
 [Kol4]
 , Singularities of pairs (to appear).
 [LB]
 H. Lange and C. Birkenhake, Complex Abelian Varieties, Springer, 1992. MR 94j:14001
 [Mori]
 S. Mori, Classification of higher dimensional varieties, Proc. Symp. Pure Math. 46 (1987), 269332. MR 89a:14040
 [Muk]
 S. Mukai, Duality between and , with application to Picard sheaves, Nagoya Math. J. 81 (1981), 153175. MR 82f:14036
 [Nak]
 M. Nakamaye, Reducibility of principally polarized abelian varieties with highly singular polarization (to appear).
 [SV]
 R. Smith and R. Varley, Multiplicity points on theta divisors, Duke Math. Jour. 82 (1996), 319326. CMP 96:12
 [Var]
 J. Varouchas, Sur l'image d'une variété Kählérienne compacte, Fonctions de Plusieurs Variables Complexes V, Lecture Notes in Math. 1188 (1986), 245256. MR 89d:32064
 [Z]
 Qi Zhang, Global holomorphic oneforms and Euler characteristics on projective manifolds with ample canonical bundles (to appear).
Similar Articles
Retrieve articles in Journal of the American Mathematical Society
with MSC (1991):
14K25,
14J99,
32J27
Retrieve articles in all journals
with MSC (1991):
14K25,
14J99,
32J27
Additional Information
Lawrence Ein
Affiliation:
Department of Mathematics, University of Illinois at Chicago, Chicago, Illinois 60680
Email:
U22425@math.uic.edu
Robert Lazarsfeld
Affiliation:
Department of Mathematics, University of California, Los Angeles, California 90024
Email:
rkl@math.ucla.edu
DOI:
http://dx.doi.org/10.1090/S0894034797002233
PII:
S 08940347(97)002233
Keywords:
Singularities,
theta divisors,
generic vanishing theorem,
Albanese mapping
Received by editor(s):
March 29, 1996
Received by editor(s) in revised form:
June 20, 1996
Additional Notes:
The first author was partially supported by N.S.F. Grant DMS 9302512.\endgraf The second author was partially supported by N.S.F. Grant DMS 9400815
Article copyright:
© Copyright 1997
American Mathematical Society
