Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Maximal degeneracy points of GKZ systems

Authors: S. Hosono, B. H. Lian and S.-T. Yau
Journal: J. Amer. Math. Soc. 10 (1997), 427-443
MSC (1991): Primary 14C30, 32G20
MathSciNet review: 1423031
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Motivated by mirror symmetry, we study certain integral representations of solutions to the Gel´fand-Kapranov-Zelevinsky (GKZ) hypergeometric system. Some of these solutions arise as period integrals for Calabi-Yau manifolds in mirror symmetry. We prove that for a suitable compactification of the parameter space, there exist certain special boundary points, which we called maximal degeneracy points, at which all solutions but one become singular.

References [Enhancements On Off] (What's this?)

  • 1. V. Batyrev, J. Algebraic Geometry 3 (1994), 493-535. MR 95c:14046
  • 2. -, Duke Math. J. 69 (1993), 349-409. MR 94m:14067
  • 3. -, Quantum cohomology rings of toric manifolds, preprint 1993.
  • 4. P. Berglund, S. Katz and A. Klemm, Nucl. Phys. B456 (1995), 153-204. CMP 96:07
  • 5. L. Billera, P. Filliman and B. Sturmfels, Adv. in Math. 83 (1990), 155-179. MR 92d:52028
  • 6. P. Candelas, X. de la Ossa, P. Green and L. Parks, Nucl. Phys. B359 (1991), 21-74. MR 93b:32029
  • 7. P. Candelas, X. de la Ossa, A. Font, S. Katz and D. Morrison, Nucl. Phys. 416 (1994), 481-538. MR 95k:32020
  • 8. P. Candelas, A. Font, S. Katz and D. Morrison, Nucl. Phys. B429 (1994), 626-674. MR 96g:32038
  • 9. D. Cox, J. Little and D. O'Shea, Ideals, Varieties and Algorithms, UTM Springer-Verlag, 1992. MR 93j:13031
  • 10. A. Font, Nucl. Phys. B391 (1993), 358-388. MR 94d:32030
  • 11. W. Fulton, An introduction to toric varieties, Princeton Univ. Press 1993. MR 94g:14028
  • 12. I. M. Gel$'$fand, A. V. Zelevinsky and M. M. Kapranov, Funct. Anal. Appl. 23 (1989), 94-106. MR 90m:22025
  • 13. -, Adv. Math. 84 (1990), 237-254, 255-271. MR 92a:14060; MR 92e:33015
  • 14. B. Greene and M. Plesser, Nucl. Phys. B338 (1990), 15-37. MR 91h:32018
  • 15. S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Commun. Math. Phys. 167 (1995), 301-350. MR 96a:32044
  • 16. -, Nucl. Phys. B433 (1995), 501-552. MR 96d:32028
  • 17. S. Hosono, B. Lian and S. T. Yau, GKZ-Generalized Hypergeometric Systems in Mirror Symmetry of Calabi-Yau Hypersurfaces, Harvard Univ. preprint, alg-geom/9511001, to appear in CMP 1996.
  • 18. A. Klemm and S. Theisen, Nucl. Phys. B389 (1993), 153-180. MR 94d:32029
  • 19. D. Morrison, Picard-Fuchs Equations and Mirror Maps for Hypersurfaces, in Essays on Mirror Manifolds, Ed. S.-T. Yau, International Press, 1992. MR 94b:32035
  • 20. D. Mumford, J. Fogarty and F. Kirwan, Geometric Invariant Theory, 3rd Ed., Springer-Verlag, 1994. MR 95m:14012
  • 21. T. Oda, Convex Bodies and Algebraic Geometry, Springer-Verlag, 1988. MR 88m:14038
  • 22. T. Oda and H. S. Park, Tôhoku Math. J. 43 (1991), 375-399. MR 92d:14042
  • 23. B. Sturmfels, Tôhoku Math. J. 43 (1991), 249-261. MR 92j:14067
  • 24. -, Gröbner Bases and Convex Polytopes, AMS University Lecture Series, Vol. 8, Providence, RI, 1995. CMP 96:05
  • 25. -, Essays on Mirror Manifolds, Ed. S.-T. Yau, International Press, 1992. MR 94b:32001

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 14C30, 32G20

Retrieve articles in all journals with MSC (1991): 14C30, 32G20

Additional Information

S. Hosono
Affiliation: Department of Mathematics, Toyama University, Toyama 930, Japan

B. H. Lian
Affiliation: Department of Mathematics, Brandeis University, Waltham, Massachusetts 02154

S.-T. Yau
Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138

Keywords: Mirror symmetry, hypergeometric systems, period integrals, Calabi-Yau manifolds, toric varieties, compactification, indicial ideal, Gr\"obner bases
Received by editor(s): May 28, 1996
Received by editor(s) in revised form: November 13, 1996
Article copyright: © Copyright 1997 by the authors

American Mathematical Society