Matrix weights via -functions

Author:
A. Volberg

Journal:
J. Amer. Math. Soc. **10** (1997), 445-466

MSC (1991):
Primary 42B20, 42A50, 47B35

DOI:
https://doi.org/10.1090/S0894-0347-97-00233-6

MathSciNet review:
1423034

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[AChS]**Sheldon Axler, Sun-Yung A. Chang, and Donald Sarason,*Products of Toeplitz operators*, Integral Equations Operator Theory**1**(1978), no. 3, 285–309. MR**511973**, https://doi.org/10.1007/BF01682841**[Bl1]**Steven Bloom,*A commutator theorem and weighted BMO*, Trans. Amer. Math. Soc.**292**(1985), no. 1, 103–122. MR**805955**, https://doi.org/10.1090/S0002-9947-1985-0805955-5**[Bl2]**Steven Bloom,*Applications of commutator theory to weighted BMO and matrix analogs of 𝐴₂*, Illinois J. Math.**33**(1989), no. 3, 464–487. MR**996354****[BG]**D. L. Burkholder and R. F. Gundy,*Distribution function inequalities for the area integral*, Studia Math.**44**(1972), 527–544. Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, VI. MR**0340557****[B1]**Donald L. Burkholder,*Explorations in martingale theory and its applications*, École d’Été de Probabilités de Saint-Flour XIX—1989, Lecture Notes in Math., vol. 1464, Springer, Berlin, 1991, pp. 1–66. MR**1108183**, https://doi.org/10.1007/BFb0085167**[B2]**Donald L. Burkholder,*A proof of Pełczynśki’s conjecture for the Haar system*, Studia Math.**91**(1988), no. 1, 79–83. MR**957287****[B3]**D. L. Burkholder,*Boundary value problems and sharp inequalities for martingale transforms*, Ann. Probab.**12**(1984), no. 3, 647–702. MR**744226****[Bu1]**Stephen M. Buckley,*Summation conditions on weights*, Michigan Math. J.**40**(1993), no. 1, 153–170. MR**1214060**, https://doi.org/10.1307/mmj/1029004679**[Bu2]**Stephen M. Buckley,*Estimates for operator norms on weighted spaces and reverse Jensen inequalities*, Trans. Amer. Math. Soc.**340**(1993), no. 1, 253–272. MR**1124164**, https://doi.org/10.1090/S0002-9947-1993-1124164-0**[FJW]**Michael Frazier, Björn Jawerth, and Guido Weiss,*Littlewood-Paley theory and the study of function spaces*, CBMS Regional Conference Series in Mathematics, vol. 79, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1991. MR**1107300****[FKP]**R. A. Fefferman, C. E. Kenig, and J. Pipher,*The theory of weights and the Dirichlet problem for elliptic equations*, Ann. of Math. (2)**134**(1991), no. 1, 65–124. MR**1114608**, https://doi.org/10.2307/2944333**[GCRF]**José García-Cuerva and José L. Rubio de Francia,*Weighted norm inequalities and related topics*, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR**807149****[Nik]**N. K. Nikol′skiĭ,*Treatise on the shift operator*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 273, Springer-Verlag, Berlin, 1986. Spectral function theory; With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller; Translated from the Russian by Jaak Peetre. MR**827223****[NT]**F. Nazarov and S. Treil,*The hunt for a Bellman function: applications to estimates of singular integral operators and to other classical problems in harmonic analysis*, pp. 1-125, St. Petersburg Math. J. (to appear).**[S1]**Donald Sarason,*Exposed points in 𝐻¹. II*, Topics in operator theory: Ernst D. Hellinger memorial volume, Oper. Theory Adv. Appl., vol. 48, Birkhäuser, Basel, 1990, pp. 333–347. MR**1207406****[S2]**V. P. Havin and N. K. Nikolski (eds.),*Linear and complex analysis. Problem book 3. Part I*, Lecture Notes in Mathematics, vol. 1573, Springer-Verlag, Berlin, 1994. MR**1334345**

V. P. Havin and N. K. Nikolski (eds.),*Linear and complex analysis. Problem book 3. Part II*, Lecture Notes in Mathematics, vol. 1574, Springer-Verlag, Berlin, 1994. MR**1334346****[Si]**I. B. Simonenko,*The Riemann boundary-value problem for 𝑛 pairs of functions with measurable coefficients and its application to the study of singular integrals in 𝐿_{𝑝} spaces with weights*, Izv. Akad. Nauk SSSR Ser. Mat.**28**(1964), 277–306 (Russian). MR**0162949****[St]**Elias M. Stein,*Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR**1232192****[Str]**D.W. Stroock,*Probability Theory, an Analytic View*, Cambridge Univ. Press, Cambridge, 1993. xvi+512 pp. MR**95f:6000****[TV1]**S. Treil and A. Volberg,*Wavelets and the angle between past and future*, J. Funct. Anal.**143**(1997) (to appear).**[TV2]**S. Treil and A. Volberg,*Continuous wavelet decomposition and a vector Hunt-Muckenhoupt-Wheeden Theorem*, Preprint, pp. 1-16, 1995; Ark. fur Mat. (to appear).**[TV3]**S. Treil and A. Volberg,*Completely regular multivariate processes and matrix weighted estimates*, Preprint, pp.1-15, 1996.**[TVZ]**S. Treil, A. Volberg, and D. Zheng,*Hilbert transform, Toeplitz operators and Hankel operators, and invariant weights*, Revista Mat. Iberoamericana (to appear).

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (1991):
42B20,
42A50,
47B35

Retrieve articles in all journals with MSC (1991): 42B20, 42A50, 47B35

Additional Information

**A. Volberg**

Affiliation:
Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

Email:
volberg@math.msu.edu

DOI:
https://doi.org/10.1090/S0894-0347-97-00233-6

Keywords:
$A_{p}$ weights,
matrix-functions,
area integrals,
singular integrals,
Carleson measures,
Triebel-Lizorkin spaces

Received by editor(s):
May 24, 1996

Received by editor(s) in revised form:
December 2, 1996

Additional Notes:
This work was partially supported by National Science Foundation Grant DMS9622936

Article copyright:
© Copyright 1997
American Mathematical Society