Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

Infinitesimal presentations
of the Torelli groups


Author: Richard Hain
Journal: J. Amer. Math. Soc. 10 (1997), 597-651
MSC (1991): Primary 14G15, 57M99; Secondary 20F99
MathSciNet review: 1431828
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Mamoru Asada and Masanobu Kaneko, On the automorphism group of some pro-𝑙 fundamental groups, Galois representations and arithmetic algebraic geometry (Kyoto, 1985/Tokyo, 1986) Adv. Stud. Pure Math., vol. 12, North-Holland, Amsterdam, 1987, pp. 137–159. MR 948240
  • 2. Mamoru Asada and Hiroaki Nakamura, On graded quotient modules of mapping class groups of surfaces, Israel J. Math. 90 (1995), no. 1-3, 93–113. MR 1336318, 10.1007/BF02783208
  • 3. Dror Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995), no. 2, 423–472. MR 1318886, 10.1016/0040-9383(95)93237-2
  • 4. Gilbert Baumslag, On generalised free products, Math. Z. 78 (1962), 423–438. MR 0140562
  • 5. Joan S. Birman, Erratum: “Braids, links, and mapping class groups” (Ann. of Math. Studies, No. 82, Princeton Univ. Press, Princeton, N. J., 1974), Princeton University Press, Princeton, N. J.; University of Tokyo Press, Toyko, 1975. Based on lecture notes by James Cannon. MR 0425944
  • 6. Spencer Bloch and Igor Kříž, Mixed Tate motives, Ann. of Math. (2) 140 (1994), no. 3, 557–605. MR 1307897, 10.2307/2118618
  • 7. Armand Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235–272 (1975). MR 0387496
  • 8. Armand Borel, Stable real cohomology of arithmetic groups. II, Manifolds and Lie groups (Notre Dame, Ind., 1980) Progr. Math., vol. 14, Birkhäuser, Boston, Mass., 1981, pp. 21–55. MR 642850
  • 9. A. Borel: Private communication, November 1994.
  • 10. James A. Carlson and Richard M. Hain, Extensions of variations of mixed Hodge structure, Astérisque 179-180 (1989), 9, 39–65. Actes du Colloque de Théorie de Hodge (Luminy, 1987). MR 1042801
  • 11. Pierre Cartier, Construction combinatoire des invariants de Vassiliev-Kontsevich des nœuds, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 11, 1205–1210 (French, with English and French summaries). MR 1221650
  • 12. K.-T. Chen: Extension of $C^\infty $ function algebra and Malcev completion of $\pi _1$, Adv. in Math. 23 (1977), 181-210.
  • 13. William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249
  • 14. Richard M. Hain, The de Rham homotopy theory of complex algebraic varieties. I, 𝐾-Theory 1 (1987), no. 3, 271–324. MR 908993, 10.1007/BF00533825
  • 15. Richard M. Hain, Algebraic cycles and extensions of variations of mixed Hodge structure, Complex geometry and Lie theory (Sundance, UT, 1989) Proc. Sympos. Pure Math., vol. 53, Amer. Math. Soc., Providence, RI, 1991, pp. 175–221. MR 1141202, 10.1090/pspum/053/1141202
  • 16. R. Hain: Letter to Looijenga, June 4, 1991.
  • 17. Richard M. Hain, Completions of mapping class groups and the cycle 𝐶-𝐶⁻, Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991) Contemp. Math., vol. 150, Amer. Math. Soc., Providence, RI, 1993, pp. 75–105. MR 1234261, 10.1090/conm/150/01287
  • 18. Richard M. Hain, Torelli groups and geometry of moduli spaces of curves, Current topics in complex algebraic geometry (Berkeley, CA, 1992/93), Math. Sci. Res. Inst. Publ., vol. 28, Cambridge Univ. Press, Cambridge, 1995, pp. 97–143. MR 1397061
  • 19. R. Hain: The Hodge de Rham Theory of Relative Malcev Completion, preprint, 1995.
  • 20. Sylvain E. Cappell and Julius L. Shaneson, Linking numbers in branched covers, Four-manifold theory (Durham, N.H., 1982) Contemp. Math., vol. 35, Amer. Math. Soc., Providence, RI, 1984, pp. 165–179. MR 780578, 10.1090/conm/035/780578
  • 21. Dennis Johnson, The structure of the Torelli group. I. A finite set of generators for \cal𝐼, Ann. of Math. (2) 118 (1983), no. 3, 423–442. MR 727699, 10.2307/2006977
  • 22. Dennis Johnson, The structure of the Torelli group. III. The abelianization of 𝒯, Topology 24 (1985), no. 2, 127–144. MR 793179, 10.1016/0040-9383(85)90050-3
  • 23. Dennis Johnson, A survey of the Torelli group, Low-dimensional topology (San Francisco, Calif., 1981) Contemp. Math., vol. 20, Amer. Math. Soc., Providence, RI, 1983, pp. 165–179. MR 718141, 10.1090/conm/020/718141
  • 24. A. Kabanov: The second cohomology of moduli spaces of Riemann surfaces with twisted coefficients, Thesis, Duke University, 1995.
  • 25. A. Kabanov: The second cohomology with symplectic coefficients of the moduli space of smooth projective curves, Compositio Math., to appear.
  • 26. A. Kabanov: Stability of Schur functors, J. Algebra, to appear.
  • 27. Christian Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. MR 1321145
  • 28. T. Kohno: Série de Poincaré-Koszul associée aux groupes de tresses pures, Invent. Math. 82 (1985), 57-75. MR 87e:32015a
  • 29. Toshitake Kohno, Monodromy representations of braid groups and Yang-Baxter equations, Ann. Inst. Fourier (Grenoble) 37 (1987), no. 4, 139–160 (English, with French summary). MR 927394
  • 30. Toshitake Kohno and Takayuki Oda, The lower central series of the pure braid group of an algebraic curve, Galois representations and arithmetic algebraic geometry (Kyoto, 1985/Tokyo, 1986) Adv. Stud. Pure Math., vol. 12, North-Holland, Amsterdam, 1987, pp. 201–219. MR 948244
  • 31. Maxim Kontsevich, Vassiliev’s knot invariants, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 137–150. MR 1237836
  • 32. John P. Labute, On the descending central series of groups with a single defining relation, J. Algebra 14 (1970), 16–23. MR 0251111
  • 33. A. I. Mal′cev, Nilpotent torsion-free groups, Izvestiya Akad. Nauk. SSSR. Ser. Mat. 13 (1949), 201–212 (Russian). MR 0028843
  • 34. Geoffrey Mess, The Torelli groups for genus 2 and 3 surfaces, Topology 31 (1992), no. 4, 775–790. MR 1191379, 10.1016/0040-9383(92)90008-6
  • 35. John W. Morgan, The algebraic topology of smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 48 (1978), 137–204. MR 516917
  • 36. Shigeyuki Morita, On the structure and the homology of the Torelli group, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), no. 5, 147–150. MR 1011856
  • 37. Shigeyuki Morita, Casson’s invariant for homology 3-spheres and characteristic classes of surface bundles. I, Topology 28 (1989), no. 3, 305–323. MR 1014464, 10.1016/0040-9383(89)90011-6
  • 38. Shigeyuki Morita, On the structure of the Torelli group and the Casson invariant, Topology 30 (1991), no. 4, 603–621. MR 1133875, 10.1016/0040-9383(91)90042-3
  • 39. Shigeyuki Morita, The extension of Johnson’s homomorphism from the Torelli group to the mapping class group, Invent. Math. 111 (1993), no. 1, 197–224. MR 1193604, 10.1007/BF01231286
  • 40. Shigeyuki Morita, Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math. J. 70 (1993), no. 3, 699–726. MR 1224104, 10.1215/S0012-7094-93-07017-2
  • 41. Hiroaki Nakamura, Naotake Takao, and Ryoichi Ueno, Some stability properties of Teichmüller modular function fields with pro-𝑙 weight structures, Math. Ann. 302 (1995), no. 2, 197–213. MR 1336334, 10.1007/BF01444493
  • 42. N. Ya. Vilenkin, Generalized normal divisors of topological groups and their applications to combinatorial topology, Trudy Moskov. Mat. Obšč. 3 (1954), 15–88 (Russian). MR 0064059
  • 43. T. Oda: A lower bound for the weight graded quotients associated with the relative weight filtration on the Teichmüller group, preprint, 1992.
  • 44. Donald S. Passman, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR 470211
  • 45. Masanori Muta, Yoshiaki Taniguchi, and Kiyosi Yamaguti, Semi-direct products of general Lie triple systems, J. Fac. Internat. Stud. Cult. Kyushu Sangyo Univ. 3 (1995), 91–101. MR 1364568
  • 46. Christophe Reutenauer, Free Lie algebras, London Mathematical Society Monographs. New Series, vol. 7, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR 1231799
  • 47. Morihiko Saito, Mixed Hodge modules and admissible variations, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 6, 351–356 (English, with French summary). MR 1054250
  • 48. Jean-Pierre Serre, Lie algebras and Lie groups, Lectures given at Harvard University, vol. 1964, W. A. Benjamin, Inc., New York-Amsterdam, 1965. MR 0218496
  • 49. Dennis Sullivan, On the intersection ring of compact three manifolds, Topology 14 (1975), no. 3, 275–277. MR 0383415
  • 50. Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 0646078
  • 51. Steven Zucker, Hodge theory with degenerating coefficients. 𝐿₂ cohomology in the Poincaré metric, Ann. of Math. (2) 109 (1979), no. 3, 415–476. MR 534758, 10.2307/1971221

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 14G15, 57M99, 20F99

Retrieve articles in all journals with MSC (1991): 14G15, 57M99, 20F99


Additional Information

Richard Hain
Affiliation: Department of Mathematics, Duke University, Durham, North Carolina 27708-0320
Email: hain@math.duke.edu

DOI: http://dx.doi.org/10.1090/S0894-0347-97-00235-X
Keywords: Mapping class groups, moduli spaces of curves, Malcev completion, Hodge theory
Received by editor(s): June 1, 1996
Received by editor(s) in revised form: February 3, 1997
Additional Notes: This work was supported in part by grants from the National Science Foundation.
Article copyright: © Copyright 1997 American Mathematical Society