Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

Integral transforms with exponential kernels and Laplace transform


Authors: Masaki Kashiwara and Pierre Schapira
Journal: J. Amer. Math. Soc. 10 (1997), 939-972
MSC (1991): Primary 32C38, 14F10, 44A10
MathSciNet review: 1447834
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $X \underset{f}{\longleftarrow} Z \underset{g}{\longrightarrow} Y$ be a correspondence of complex manifolds. We study integral transforms associated to kernels $\exp(\varphi)$, with $\varphi$ meromorphic on $Z$, acting on formal or moderate cohomologies. Our main application is the Laplace transform. In this case, $X$ is the projective compactification of the vector space $V \simeq {\Bbb C}^n$, $Y$ is its dual space, $Z=X\times Y$ and $\varphi(z,w) =\langle z,w \rangle$. We obtain the isomorphisms:

\begin{align*}&F \mathop\otimes\limits^W{\cal {O}}_V \simeq F^\wedge[n] \mathop\otimes\limits^W{\cal {O}}_{V^*},\quad \operatorname{ THom}(F,{\cal {O}}_V) \simeq \operatorname{ THom}(F^\wedge[n],{\cal {O}}_{V^*}) \end{align*}

where $F$ is a conic and ${\Bbb R}$-constructible sheaf on $V$ and $F^\wedge$ is its Fourier-Sato transform. Some applications are discussed.


References [Enhancements On Off] (What's this?)

  • [A] Emmanuel Andronikof, Microlocalisation tempérée, Mém. Soc. Math. France (N.S.) 57 (1994), 176 (French, with English and French summaries). MR 1273991
  • [B] Jan-Erik Björk, Analytic 𝒟-modules and applications, Mathematics and its Applications, vol. 247, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1232191
  • [B-M-V] Jean-Luc Brylinski, Bernard Malgrange, and Jean-Louis Verdier, Transformation de Fourier géométrique. II, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 5, 193–198 (French, with English summary). MR 854732
  • [D'A-S1] A. D'Agnolo and P. Schapira, The Radon-Penrose transform for ${\cal {D}}-$modules, J. of Functional Analysis, 139 (1996), 349-382. CMP 96:16
  • [D'A-S2] A. D'Agnolo and P. Schapira, Leray's quantization of projective duality, Duke Math. J. 84 (1996), 453-496. CMP 96:17
  • [D] L. Daia, La transformation de Fourier pour les ${\cal {D}}$-modules, Thèse, Université de Grenoble (1995).
  • [F-G] J. Faraut and S. Gindikin, Private communication to P.S., (1995).
  • [H-K] R. Hotta and M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra, Invent. Math. 75 (1984), no. 2, 327–358. MR 732550, 10.1007/BF01388568
  • [K] Masaki Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci. 20 (1984), no. 2, 319–365. MR 743382, 10.2977/prims/1195181610
  • [K-S1] Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. MR 1074006
    Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1994. With a chapter in French by Christian Houzel; Corrected reprint of the 1990 original. MR 1299726
  • [K-S2] M. Kashiwara and P. Schapira, Moderate and formal cohomology associated with constructible sheaves, Mémoires Soc. Math. France, 64 (1996). CMP 97:04
  • [K-Sm] Masaki Kashiwara and Wilfried Schmid, Quasi-equivariant 𝒟-modules, equivariant derived category, and representations of reductive Lie groups, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 457–488. MR 1327544
  • [K-L] Nicholas M. Katz and Gérard Laumon, Transformation de Fourier et majoration de sommes exponentielles, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 361–418 (French). MR 823177
  • [M] Bernard Malgrange, Transformation de Fourier géometrique, Astérisque 161-162 (1988), Exp. No. 692, 4, 133–150 (1989) (French). Séminaire Bourbaki, Vol. 1987/88. MR 992206
  • [Mr] A. Martineau, Distributions et valeurs au bord des fonctions holomorphes, Theory of Distributions (Proc. Internat. Summer Inst., Lisbon, 1964), Inst. Gulbenkian Ci., Lisbon, 1964, pp. 193–326 (French). MR 0219754
  • [S-K-K] Mikio Sato, Takahiro Kawai, and Masaki Kashiwara, Microfunctions and pseudo-differential equations, Hyperfunctions and pseudo-differential equations (Proc. Conf., Katata, 1971; dedicated to the memory of André Martineau), Springer, Berlin, 1973, pp. 265–529. Lecture Notes in Math., Vol. 287. MR 0420735

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 32C38, 14F10, 44A10

Retrieve articles in all journals with MSC (1991): 32C38, 14F10, 44A10


Additional Information

Masaki Kashiwara
Affiliation: RIMS, Kyoto University, Kyoto 606-01, Japan

Pierre Schapira
Affiliation: Institut de Mathématiques, Université Paris VI, Case 82, 4 pl Jussieu, 75252 Paris, France
Email: schapira@math.jussieu.fr

DOI: http://dx.doi.org/10.1090/S0894-0347-97-00245-2
Received by editor(s): September 17, 1996
Received by editor(s) in revised form: May 23, 1997
Article copyright: © Copyright 1997 American Mathematical Society