Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties


Authors: Jun Li and Gang Tian
Journal: J. Amer. Math. Soc. 11 (1998), 119-174
MSC (1991): Primary 14D20
MathSciNet review: 1467172
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we define the virtual moduli cycle of moduli spaces with perfect tangent-obstruction theory. The two interesting moduli spaces of this type are moduli spaces of vector bundles over surfaces and moduli spaces of stable morphisms from curves to projective varieties. As an application, we define the Gromov-Witten invariants of smooth projective varieties and prove all its basic properties.


References [Enhancements On Off] (What's this?)

  • [Al] V. Alexeev, Moduli spaces $M_{g,n}(W)$ for surfaces, preprint.
  • [At] I. V. Artamkin, On the deformation of sheaves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 660–665, 672 (Russian); English transl., Math. USSR-Izv. 32 (1989), no. 3, 663–668. MR 954302
  • [Be] A. Beauville, Quantum cohomology of complete intersections, preprint.
  • [Bh] K. Behrend, The Gromov-Witten invariants, Invent. Math. 127 no. 3 (1997), 601-617. CMP 97:07
  • [BF] K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 no. 1 (1997), 45-88. CMP 97:09
  • [Ber] A. Bertram, Quantum Schubert Calculus, Advance in Math. 128 (1997), 289-305. CMP 97:14
  • [BDW] Aaron Bertram, Georgios Daskalopoulos, and Richard Wentworth, Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians, J. Amer. Math. Soc. 9 (1996), no. 2, 529–571. MR 1320154, 10.1090/S0894-0347-96-00190-7
  • [Ci] Ionuţ Ciocan-Fontanine, Quantum cohomology of flag varieties, Internat. Math. Res. Notices 6 (1995), 263–277. MR 1344348, 10.1155/S1073792895000213
  • [CM] R. Dijkgraaf, C. Faber, and G. van der Geer (eds.), The moduli space of curves, Progress in Mathematics, vol. 129, Birkhäuser Boston, Inc., Boston, MA, 1995. Papers from the conference held on Texel Island, April 1994. MR 1363050
  • [DM] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109. MR 0262240
  • [Do] S. K. Donaldson, Polynomial invariants for smooth four-manifolds, Topology 29 (1990), no. 3, 257–315. MR 1066174, 10.1016/0040-9383(90)90001-Z
  • [ES] Geir Ellingsrud and Stein Arild Strømme, The number of twisted cubic curves on the general quintic threefold, Math. Scand. 76 (1995), no. 1, 5–34. MR 1345086
  • [FO] K. Fukaya and K. Ono, Arnold conjecture and Gromov-Witten invariants, preprint (1996).
  • [Fu] William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620
  • [FP] W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, to appear in the Proceeding of AMS conference in algebraic geometry, Santa Cruz.
  • [GH] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725
  • [Kz1] S. Katz, Lectures at 1993 enumerative geometry conference in Dyrkolbotn, Norway, private communication.
  • [Kz2] S. Katz, Gromov-Witten Invariants via Algebraic Geometry, preprint.
  • [Ka] Yujiro Kawamata, Unobstructed deformations. A remark on a paper of Z. Ran: “Deformations of manifolds with torsion or negative canonical bundle” [J. Algebraic Geom. 1 (1992), no. 2, 279–291; MR1144440 (93e:14015)], J. Algebraic Geom. 1 (1992), no. 2, 183–190. MR 1144434
  • [Ko1] Maxim Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), no. 1, 1–23. MR 1171758
  • [Ko2] Maxim Kontsevich, Enumeration of rational curves via torus actions, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 335–368. MR 1363062
  • [KM] M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562. MR 1291244
  • [Kn] Finn F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks 𝑀_{𝑔,𝑛}, Math. Scand. 52 (1983), no. 2, 161–199. MR 702953
  • [La] Olav Arnfinn Laudal, Formal moduli of algebraic structures, Lecture Notes in Mathematics, vol. 754, Springer, Berlin, 1979. MR 551624
  • [Li] Jun Li, Algebraic geometric interpretation of Donaldson’s polynomial invariants, J. Differential Geom. 37 (1993), no. 2, 417–466. MR 1205451
  • [LT] J. Li and G. Tian, Quantum cohomology of homogeneous manifolds, to appear in J. Alg. Geom.
  • [LT2] J. Li and G. Tian, Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds, preprint (1996).
  • [Ma] Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
  • [Mo] John W. Morgan, Comparison of the Donaldson polynomial invariants with their algebro-geometric analogues, Topology 32 (1993), no. 3, 449–488. MR 1231956, 10.1016/0040-9383(93)90001-C
  • [Mu] David Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271–328. MR 717614
  • [Ra] Ziv Ran, Deformations of maps, Algebraic curves and projective geometry (Trento, 1988) Lecture Notes in Math., vol. 1389, Springer, Berlin, 1989, pp. 246–253. MR 1023402, 10.1007/BFb0085936
  • [Ru] Yongbin Ruan, Topological sigma model and Donaldson-type invariants in Gromov theory, Duke Math. J. 83 (1996), no. 2, 461–500. MR 1390655, 10.1215/S0012-7094-96-08316-7
  • [RQ] Y. Ruan and Z-B. Qin, Quantum cohomology of projective bundles over $\mathbf{P}^{n}$, to appear in Trans. Amer. Math. Soc. CMP 97:05
  • [RT1] Yongbin Ruan and Gang Tian, A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995), no. 2, 259–367. MR 1366548
  • [RT2] Yongbin Ruan and Gang Tian, Higher genus symplectic invariants and sigma model coupled with gravity, Turkish J. Math. 20 (1996), no. 1, 75–83. MR 1392664
  • [Si] B. Siebert, Gromov-Witten invariants for general symplectic manifolds, preprint (1996).
  • [Ti] G. Tian, Quantum cohomology and its associativity, To appear in Proc. of 1st Current Developments in Math., Cambridge (1995).
  • [Vi] Angelo Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), no. 3, 613–670. MR 1005008, 10.1007/BF01388892
  • [Vo] C. Voisin, A mathematical proof of Aspinwall-Morrison formula, Compositio Math. 104 no. 2 (1996), 135-151. CMP 97:04
  • [W1] Edward Witten, Topological sigma models, Comm. Math. Phys. 118 (1988), no. 3, 411–449. MR 958805
  • [W2] Edward Witten, Two-dimensional gravity and intersection theory on moduli space, Surveys in differential geometry (Cambridge, MA, 1990) Lehigh Univ., Bethlehem, PA, 1991, pp. 243–310. MR 1144529

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 14D20

Retrieve articles in all journals with MSC (1991): 14D20


Additional Information

Jun Li
Affiliation: Department of Mathematics, Stanford University, Stanford, California 94305
Email: jli@gauss.stanford.edu

Gang Tian
Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Email: tian@math.mit.edu

DOI: http://dx.doi.org/10.1090/S0894-0347-98-00250-1
Keywords: Moduli space, intersection theory, invariant
Received by editor(s): September 25, 1996
Received by editor(s) in revised form: July 30, 1997
Additional Notes: Both authors were supported in part by NSF grants, and the first author was also supported by an A. Sloan fellowship and Terman fellowship.
Article copyright: © Copyright 1998 American Mathematical Society