tensor categories from quantum groups
Author:
Hans Wenzl
Journal:
J. Amer. Math. Soc. 11 (1998), 261-282
MSC (1991):
Primary 81R50, 46L37
DOI:
https://doi.org/10.1090/S0894-0347-98-00253-7
MathSciNet review:
1470857
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a semisimple Lie algebra and let
be the ratio between the square of the lengths of a long and a short root. Moreover, let
be the quotient category of the category of tilting modules of
modulo the ideal of tilting modules with zero
-dimension for
. We show that for
a sufficiently large integer, the morphisms of
are Hilbert spaces satisfying functorial properties. As an application, we obtain a subfactor of the hyperfinite II
factor for each object of
.
- [A] H.H. Andersen, Tensor products of quantized tilting modules, Comm. Math. Phys. 149 (1991), 149-159. MR 94b:17015
- [AP] H.H. Andersen, J. Paradowski, Fusion categories arising from semisimple Lie algebras, Comm. Math. Phys. 169 (1995), 563-588. MR 96e:17026
- [D1] V. Drinfeld, Quantum groups, Proceedings ICM 1986, 798-820. MR 89f:17017
- [D2] V. Drinfeld, On almost cocommutaive Hopf algebras, Leningrad Math. J. 1 (1990), 321-342. MR 91b:16046
- [EK] D. Evans and Y. Kawahigashi, Orbifold subfactors from Hecke algebras, Comm. Math. Phys. 165 (1994), 445-484. MR 96c:46059
- [GHJ] F. Goodman, P. de la Harpe and V.F.R. Jones, Coxeter graphs and towers of algebras, Springer Verlag, MSRI Publications 1989. MR 91c:46082
- [GW] F.Goodman, H. Wenzl, Littlewood Richardson coefficients for Hecke algebras at roots of unity, Adv. Math. 82 (1990), 244-265. MR 91i:20013
- [H] J. Humphreys, Introduction to Lie algebras and representation theory, Springer 1972. MR 48:2197
- [J] V.F.R. Jones, Index for subfactors, Invent. Math 72 (1983), 1-25. MR 84d:46097
- [JS] A. Joyal and R. Street, The Geometry of Tensor Calculus, I. Adv. Math. 88, n. 1 (1991). MR 92d:18011
- [Kc] V. Kac, Infinite dimensional Lie algebras, Cambridge University Press, 1990. MR 92k:17038
- [Ka]
M. Kashiwara, On crystal bases of the
-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465-516. MR 93b:17045
- [Ks] Ch. Kassel, Quantum groups, Springer, 1995. MR 96e:17041
- [KL] D. Kazhdan, G. Lusztig, Tensor structures arising from affine Lie algebras, I-IV, J. of AMS 6/7 (1993). MR 93m:17014; MR 94g:17048; MR 94g:17049
- [Ki] A. Kirillov, Jr., On an inner product in modular categories, J. of AMS 9 (1996), 1135-1170. MR 97f:18007
- [KR]
A.N. Kirillov and N.Yu. Reshetikhin,
-Weyl group and a multiplicative formula for universal
-matrices, Comm. Math. Phys. 134 (1990), 413-419. MR 92c:17023
- [LS] S.Z. Levendorskii and Ya.S. Soibelman, Some applications of quantum Weyl groups, J. Geom. Phys. 7 (1990), 241-254. MR 92g:17016
- [LR]
R. Longo, J.E. Roberts, A theory of dimension,
-Theory, (to appear).
- [Li] P. Littelmann, Paths and root operators in representation theory, Ann. Math. 142 (1995), 499-525. MR 96m:17011
- [Lu] G. Lusztig, Introduction to quantum groups, Birkhäuser, 1993. MR 94m:17016
- [OV] A.L. Onishchik, E.B. Vinberg, Lie groups and algebraic groups, Springer, 1990. MR 91g:22001
- [P] M. Pimsner, A class of Markov traces, preprint.
- [PP] M. Pimsner, S. Popa, Entropy and index for subfactors, Ann. scient. Ec. Norm. Sup., 19 (1986), 57-106. MR 87m:46120
- [Po1] S. Popa, Classification of subfactors: reduction to commuting square, Invent. Math. 101 (1990), 19-43. MR 91h:46109
- [Po2] S. Popa, An axiomatization of the lattice of higher relative commutants, Invent. Math. 120 (1995), 427-445. MR 96g:46051
- [TW1] V. G. Turaev, H. Wenzl, Quantum invariants of 3-manifolds associated with classical simple Lie algebras, Int. J. Math. 4 (1993), 323-358. MR 94i:57019
- [TW2] V. G. Turaev, H. Wenzl, Semisimple and modular tensor categories from link invariants, Math. Annalen 309 (1997), 411-461.
- [T]
V.G. Turaev, Quantum Invariants of Knots and
-Manifolds, de Gruyter, 1994. MR 95k:57014
- [V] E. Verlinde, Fusion rules and modular transformation in 2D conformal field theory, Nuclear Physics B 300 (1988), 360-376. MR 89h:81238
- [Wa1] A. Wassermann, Coactions and Yang-Baxter equations for ergodic actions and subfactors, LMS Lecture Notes 136 (1988), 203-236. MR 92d:46167
- [Wa2] A. Wassermann, Operator algebras and conformal field theory, Proc. I.C.M. Zürich (1994), Birkhäuser. MR 97e:81143
- [Wa3] A. Wassermann, Operator algebras and conformal field theory III (to appear).
- [W1]
H. Wenzl, Hecke algebras of type
and subfactors. Invent. Math. 92 (1988), 349-383. MR 90b:46118
- [W2] H. Wenzl, Quantum groups and subfactors of Lie type B, C and D, Comm. Math. Phys. 133 (1990), 383-433. MR 92k:17032
- [X]
F. Xu, Standard
-lattices from quantum groups, preprint.
Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 81R50, 46L37
Retrieve articles in all journals with MSC (1991): 81R50, 46L37
Additional Information
Hans Wenzl
Affiliation:
Department of Mathematics, University of California at San Diego, La Jolla, California 92093-0112
Email:
wenzl@brauer.ucsd.edu
DOI:
https://doi.org/10.1090/S0894-0347-98-00253-7
Keywords:
Quantum groups at roots of 1,
modular tensor categories,
subfactors
Received by editor(s):
February 7, 1997
Received by editor(s) in revised form:
September 29, 1997
Additional Notes:
The author was supported in part by NSF grant # DMS 94-00987
Article copyright:
© Copyright 1998
American Mathematical Society