Quasi-isometric rigidity of nonuniform lattices

in higher rank symmetric spaces

Author:
Alex Eskin

Journal:
J. Amer. Math. Soc. **11** (1998), 321-361

MSC (1991):
Primary 22E40, 20F32

DOI:
https://doi.org/10.1090/S0894-0347-98-00256-2

MathSciNet review:
1475886

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We compute the quasi-isometry group of an irreducible nonuniform lattice in a semisimple Lie group with finite center and no rank one factors, and show that any two such lattices are quasi-isometric if and only if they are commensurable up to conjugation.

**[B]**K. Brown,*Buildings*, Springer-Verlag, New York, 1989. MR**90e:20001****[CC]**J. Cannon and D. Cooper,*A characterization of cocompact hyperbolic and finite-volume hyperbolic groups in dimension three*, Trans. AMS**330**(1992), 419-431. MR**92f:22017****[Dru]**C. Drutu,*Quasi-isometric classification of semisimple groups in higher rank*, Preprint.**[EF]**A. Eskin and B. Farb,*Quasi-flats and rigidity in higher rank symmetric spaces*, Journal Amer. Math. Soc. Vol 10, No. 3, 1997, pp. 653-692. CMP**97:11****[Fa]**B. Farb,*The quasi-isometry classification of lattices in semisimple Lie groups*, Math. Res. Lett. Vol. 4, No. 5 (1997), pp. 705-717.**[FM]**B. Farb and L. Mosher,*A rigidity theorem for the solvable Baumslag-Solitar groups*(with an appendix by D. Cooper), to appear in*Inventiones Math*.**[FS]**B. Farb and R. Schwartz,*The large-scale geometry of Hilbert modular groups*, J. Diff. Geom. 44, No.3 (1996), pp 435-478. CMP**97:07****[KL]**B. Kleiner and B. Leeb,*Rigidity of quasi-isometries for symmetric spaces of higher rank*, to appear in*Publ. Math. IHES*.**[LMR]**A. Lubotzky, S. Mozes, M. S. Raghunathan,*The Word and Riemannian Metrics on Lattices of Semisimple Groups*, preprint.**[Mo]**G.D. Mostow,*Strong Rigidity of Locally Symmetric Spaces*, Annals of Math. Studies, No. 78, Princeton Univ. Press, 1973. MR**52:5874****[Mu]**J.R. Munkries,*Elements of Algebraic Topology*, Benjamin/Cummings Publishing Company, Menlo Park, 1984.**[Pa]**P. Pansu,*Metriques de Carnot-Caratheodory et quasiisometries des espaces symmetriques de rang un*, Annals of Math. 129 (1989), p.1-60. MR**90e:53058****[S1]**R. Schwartz,*The Quasi-Isometry Classification of Rank One Lattices*, IHES Sci. Publ. Math., vol. 82, (1996). MR**97c:22014****[S2]**R. Schwartz,*Quasi-Isometric Rigidity and Diophantine Approximation*, Acta Math. 177 (1996), No. 1, pp. 75-112. MR**97m:53093****[Sh]**N. Shah,*Invariant measures and orbit closures on homogeneous spaces for actions of subgroups generated by unipotent elements*, To appear in the Proceedings of the International Colloquium on Lie Groups and Ergodic Theory, TIFR, Bombay, 1996.**[Ti]**J. Tits,*Buildings of spherical type and finite BN-pairs*, Lecture Notes in Math., Vol. 386, Springer-Verlag, 1974. MR**57:9866****[Zim]**R. Zimmer,*Ergodic Theory and Semisimple Groups*, Birkhauser Boston, Inc., 1984. MR**86j:22014**

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (1991):
22E40,
20F32

Retrieve articles in all journals with MSC (1991): 22E40, 20F32

Additional Information

**Alex Eskin**

Affiliation:
Department of Mathematics, University of Chicago, 5734 S.University Ave, Chicago, Illinois 60637

Email:
eskin@math.uchicago.edu

DOI:
https://doi.org/10.1090/S0894-0347-98-00256-2

Keywords:
Lie groups,
discrete subgroups,
geometric group theory

Received by editor(s):
October 28, 1996

Received by editor(s) in revised form:
October 21, 1997

Additional Notes:
The author was supported in part by an N.S.F. Postdoctoral Fellowship.

Article copyright:
© Copyright 1998
American Mathematical Society