Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Geometric realization of Whittaker functions and the Langlands conjecture


Authors: E. Frenkel, D. Gaitsgory, D. Kazhdan and K. Vilonen
Journal: J. Amer. Math. Soc. 11 (1998), 451-484
MSC (1991): Primary 11R39, 11F70; Secondary 14H60, 22E55
DOI: https://doi.org/10.1090/S0894-0347-98-00260-4
MathSciNet review: 1484882
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the equivalence of two conjectural constructions of unramified cuspidal automorphic functions on the adelic group $GL_n(\mathbb A)$ associated to an irreducible $\ell$-adic local system of rank $n$ on an algebraic curve $X$ over a finite field. The existence of such a function is predicted by the Langlands conjecture. The first construction, which was proposed by Shalika and Piatetski-Shapiro following Weil and Jacquet-Langlands ($n=2$), is based on considering the Whittaker function. The second construction, which was proposed recently by Laumon following Drinfeld ($n=2$) and Deligne ($n=1$), is geometric: the automorphic function is obtained via Grothendieck's ``faisceaux-fonctions'' correspondence from a complex of sheaves on an algebraic stack. Our proof of their equivalence is based on a local result about the spherical Hecke algebra, which we prove for an arbitrary reductive group. We also discuss a geometric interpretation of this result.


References [Enhancements On Off] (What's this?)

  • [1] A. Beauville, Y. Laszlo, Conformal blocks and generalized theta functions, Comm. Math. Phys. 164 (1994) 385-419. MR 95k:1401 [2] A. Beauville, Y. Laszlo, Un lemme de descente, C.R. Acad. Sci. Paris, Sér. I Math. 320 (1995) 335-340. MR 96a:14049 [3] J. Bernstein, A. Zelevinsky, Representations of the group $GL(n,F)$ where $F$ is a local non-Archimedean field, Russ. Math. Surv. 31 (1976) 1-68. [4] R.K. Brylinski, Limits of weight spaces, Lusztig's $q$-analogs, and fiberings of adjoint orbits, Journal of AMS 2 (1989) 517-533. MR 90g:17011 [5] W. Casselman, J. Shalika, The unramified principal series of $p$-adic groups II. The Whittaker function, Comp. Math. 41 (1980) 207-231. MR 83i:22027 [6] P. Deligne, Le conjecture de Weil II, Publ. IHES 52 (1980) 137-252 MR 83c:14017 [7] V.G. Drinfeld, Two-dimensional $\ell$-adic representations of the fundamental group of a curve over a finite field and automorphic forms on $GL(2)$, Amer. J. Math. 105 (1983) 85-114. MR 84i:12011 [8] V.G. Drinfeld, C. Simpson, $B$-structures on $G$-bundles and local triviality, Math. Res. Lett. 2 (1995) 823-829. MR 96k:14013 [9] I.M. Gelfand, D. Kazhdan, Representations of the group $GL(n,K)$ where $K$ is a local field, in Lie Groups and Their Representations, ed. I.M. Gelfand, pp. 95-118, Adam Hilder Publ., 1975. MR 53:8334 [10] V. Ginzburg, Perverse sheaves on a loop group and Langlands duality, Preprint alg-geom/9511007 (1995). [11] B.H. Gross, On the Satake isomorphism, Preprint (1996). [12] B.H. Gross, D. Prasad, On the decomposition of a representation of $SO_n$ when restricted to $SO_{n-1}$, Canadian J. Math. 44 (1992) 974-1002. MR 93j:22031 [13] A. Grothendieck, Techniques de construction et théorèmes d'existence en géométrie algébrique IV: les schémas de Hilbert, Séminaire Bourbaki 221 (1960/61), Benjamin (1966). [14] W.H. Hesselink, Characters of the nullcone, Math. Ann. 252 (1980) 179-182. MR 82c:17004 [15] H. Jacquet, R.P. Langlands, Automorphic Forms on $GL(2)$, Lect. Notes in Math. 114, Springer Verlag, 1970. MR 53:5481 [16] H. Jacquet, I.I. Piatetski-Shapiro, J. Shalika, Automorphic forms on $GL(3)$, I and II, Ann. Math. 109 (1979) 169-258. MR 80i:10034a; MR 80i:10034b [17] S. Kato, Spherical functions and a $q$-analogue of Kostant's weight multiplicity formula, Inv. Math. 66 (1982) 461-468. MR 84b:22030 [18] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963) 327-404. MR 28:1252 [19] R.P. Langlands, Problems in the theory of automorphic forms, in Lect. Notes in Math. 170, pp. 18-61, Springer Verlag, 1970. MR 46:1758 [20] Y. Laszlo, Ch. Sorger, The line bundles on the moduli of parabolic $G$-bundles over curves and their sections, Ann. Sci. École Norm. Sup. 30 (1997) 499-525. CMP 97:14 [21] G. Laumon, Transformation de Fourier, constants d'équations fonctionnelles et conjecture de Weil, Publ. IHES 65 (1987) 131-210. MR 88g:14019 [22] G. Laumon, Correspondance de Langlands géométrique pour les corps de fonctions, Duke Math. J. 54 (1987) 309-359. MR 88g:11086 [23] G. Laumon, Faisceaux automorphes liés aux séries d'Eisenstein, in Automorphic Forms, Shimura varieties, and $L$-functions, vol. 1, pp. 227-281, Academic Press, 1990. MR 91k:11106 [24] G. Laumon, L. Moret-Bailly, Champs algébriques, Preprint 92-42, Université Paris Sud, 1992. [25] G. Laumon, Faisceaux automorphes pour $GL_n$: la première construction de Drinfeld, Preprint alg-geom/9511004 (1995). [26] G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. Math. 42 (1981) 169-178. MR 83c:20059 [27] G. Lusztig, Singularities, character formulas, and a $q$-analogue of weight multiplicities, Astérisque 101 (1983) 208-229. MR 85m:17005 [28] I.G. Macdonald, Spherical Functions on a Group of $p$-adic Type, Ramanujan Inst. Publ., University of Madras, India, 1971. MR 55:8261 [29] I. Mirkovi\'{c}, K. Vilonen Perverse sheaves on loop Grassmannians and Langlands duality, Preprint alg-geom/9703010, to appear in the proceedings of a conference on the geometric Langlands correspondence at Luminy, June 1995. [30] I.I. Piatetski-Shapiro, Euler subgroups, in Lie Groups and Their Representations, ed. I.M. Gelfand, pp. 597-620, Adam Hilder Publ., 1975. MR 53:10720 [31] I. Satake, Theory of spherical functions on reductive algebraic groups over $p$-adic fields, Publ. IHES 18 (1963) 1-69. MR 33:4059 [32] J.A. Shalika, The multiplicity one theorem for $GL_n$, Ann. Math. 100 (1974) 171-193. MR 50:545 [33] T. Shintani, On an explicit formula for class 1 Whittaker functions on $GL_n$ over ${\mathfrak P}$-adic fields, Proc. Japan Acad. 52 (1976) 180-182. MR 53:10991 [34] A. Weil, Dirichlet Series and Automorphic Forms, Lect. Notes in Math. 189, Springer Verlag, 1971.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 11R39, 11F70, 14H60, 22E55

Retrieve articles in all journals with MSC (1991): 11R39, 11F70, 14H60, 22E55


Additional Information

E. Frenkel
Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138

D. Gaitsgory
Affiliation: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540

D. Kazhdan
Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138

K. Vilonen
Affiliation: Department of Mathematics, Brandeis University, Waltham, Massachusetts 02254

DOI: https://doi.org/10.1090/S0894-0347-98-00260-4
Received by editor(s): March 31, 1997
Received by editor(s) in revised form: November 26, 1997
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society