Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Local Rankin-Selberg convolutions for $\mathrm{GL}_{n}$:
explicit conductor formula

Authors: Colin J. Bushnell, Guy M. Henniart and Philip C. Kutzko
Journal: J. Amer. Math. Soc. 11 (1998), 703-730
MSC (1991): Primary 22E50
MathSciNet review: 1606410
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $F$ be a non-Archimedean local field and $n_{1}$, $n_{2}$ positive integers. For $i=1,2$, let $G_{i}=\mathrm{GL}_{n_{i}}(F)$ and let $\pi _{i}$ be an irreducible supercuspidal representation of $G_{i}$. Jacquet, Piatetskii-Shapiro and Shalika have defined a local constant $\varepsilon (\pi _{1}\times \pi _{2},s,\psi )$ to the $\pi _{i}$ and an additive character $\psi $ of $F$. This object is of central importance in the study of the local Langlands conjecture. It takes the form

\begin{equation*}\varepsilon (\pi _{1}\times \pi _{2},s,\psi ) = q^{-fs}\varepsilon (\pi _{1} \times \pi _{2},0,\psi ), \end{equation*}

where $f=f(\pi _{1}\times \pi _{2},\psi )$ is an integer. The irreducible supercuspidal representations of $G=\mathrm{GL}_{n}(F)$ have been described explicitly by Bushnell and Kutzko, via induction from open, compact mod centre, subgroups of $G$. This paper gives an explicit formula for $f(\pi _{1} \times \pi _{2},\psi )$ in terms of the inducing data for the $\pi _{i}$. It uses, on the one hand, the alternative approach to the local constant due to Shahidi, and, on the other, the general theory of types along with powerful existence theorems for types in $\mathrm{GL}(n)$, developed by Bushnell and Kutzko.

References [Enhancements On Off] (What's this?)

  • 1. J.-N. Bernstein, Le ``centre'' de Bernstein (rédigé par P. Deligne), Représentations des groupes réductifs sur un corps local, Hermann, Paris, 1984, pp. 1-32. MR 86e:22028
  • 2. C. J. Bushnell, Hereditary orders, Gauss sums and supercuspidal representations of $\operatorname {GL}_{N}$, J. reine angew. Math. 375/376 (1987), 184-210. MR 88e:22024
  • 3. C. J. Bushnell and G. Henniart, Local tame lifting for $\operatorname {GL}(N)$ I: simple characters, Publ. Math. IHES 83 (1996), 105-233. CMP 97:05
  • 4. -, An upper bound on conductors for pairs, J. Number Theory 65 (1997), 183-196. CMP 97:16
  • 5. C. J. Bushnell and P. C. Kutzko, The admissible dual of $GL(N)$ via compact open subgroups, Annals of Math. Studies 129, Princeton University Press, Princeton, NJ, 1993. MR 94h:22007
  • 6. -, Smooth representations of reductive $p$-adic groups: structure theory via types, Proc. London Math. Soc., to appear.
  • 7. -, Semisimple types in $\operatorname {GL}_{n}$ Preprint, King's College London (1997).
  • 8. W. Casselman, Introduction to the theory of admissible representations of $\mathfrak{p}$-adic reductive groups, Preprint, University of British Columbia, 1974.
  • 9. I. M. Gel'fand and D. A. Kazhdan, Representations of the group $GL(n,K)$ where $K$ is a local field, Funkcional. Anal. i Prilozen. 6 (1972), 73-74. MR 48:11405
  • 10. R. Godement and H. Jacquet, Zeta functions of simple algebras, Lecture Notes in Math. 260, Springer, Berlin, 1972. MR 49:7241
  • 11. Harish-Chandra, Harmonic analysis on reductive $p$-adic groups, Harmonic Analysis on Homogeneous Spaces (C. C. Moore, ed.), Proc. Symposia Pure Math. XXVI, Amer. Math. Soc., Providence, RI, 1973, pp. 167-192. MR 49:5238
  • 12. G. Henniart, Caractérisation de la correspondance de Langlands locale par les facteurs $\boldsymbol \varepsilon $ de paires, Invent. Math. 113 (1993), 339-350. MR 96e:11078
  • 13. H. Jacquet, I. I. Piatetskii-Shapiro and J. A. Shalika, Conducteur des représentations du groupe linéaire, Math. Ann. 236 (1981), 199-214. MR 83c:22025
  • 14. -, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), 367-483. MR 85g:11044
  • 15. F. Rodier, Whittaker models for admissible representations of reductive $\mathfrak{p}$-adic split groups, Harmonic Analysis on Homogeneous Spaces (C. C. Moore, ed.), Proc. Symposia Pure Math. XXVI, Amer. Math. Soc., Providence, RI, 1973, pp. 425-430. MR 50:7419
  • 16. F. Sauvageot, Principe de densité pour les groupes réductifs, Compositio Math. 108 (1997), 151-184. CMP 98:01
  • 17. F. Shahidi, On certain $L$-functions, Amer. J. Math. 103 (1981), 297-355. MR 82i:10030
  • 18. -, Fourier transforms of intertwining operators and Plancherel measures for $\operatorname {GL}(n)$, Amer. J. Math. 106 (1984), 67-111. MR 86b:22031
  • 19. -, A proof of Langlands's conjecture on Plancherel measures; complementary series for $p$-adic groups, Ann. Math. 132 (1990), 273-330. MR 91m:11095
  • 20. A.J. Silberger, Introduction to harmonic analysis on reductive $p$-adic groups, Math. Notes 23, Princeton University Press, Princeton, NJ, 1979. MR 81m:22025

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 22E50

Retrieve articles in all journals with MSC (1991): 22E50

Additional Information

Colin J. Bushnell
Affiliation: Department of Mathematics, King’s College, Strand, London WC2R 2LS, United Kingdom

Guy M. Henniart
Affiliation: Département de Mathématiques, URA 752 du CNRS, Université de Paris-Sud, 91405 Orsay Cedex, France
Email: or

Philip C. Kutzko
Affiliation: Department of Mathematics, University of Iowa, Iowa City, Iowa 52242

Keywords: Local field, local constant of pair
Received by editor(s): October 3, 1997
Received by editor(s) in revised form: March 2, 1998
Additional Notes: The first author thanks Université de Paris Sud for hospitality and support for a period during the preparation of this paper.
The research of the second author was partially supported by EU TMR-Network “Arithmetic Geometry and Automorphic Forms” and a joint CNRS, NSF research grant.
The research of the third author was partially supported by NSF grant DMS-9003213 and a joint CNRS, NSF research grant.
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society