Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Journal of the American Mathematical Society
Journal of the American Mathematical Society
ISSN 1088-6834(online) ISSN 0894-0347(print)

 

Une compactification des champs
classifiant les chtoucas de Drinfeld


Author: Laurent Lafforgue
Journal: J. Amer. Math. Soc. 11 (1998), 1001-1036
MSC (1991): Primary 11R58, 11G09, 14G35
MathSciNet review: 1609893
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: One knows that the notion of Harder-Narasimhan's canonical polygon allows one to write the stacks classifying Drinfeld's shtukas of rank at least $2$ as inductive limits of open substacks of finite type. When there is no level structure, we present here a smooth modular compactification of each such open substack, generalizing Drinfeld's construction for rank $2$.

Résumé. On sait qu'en rang au moins $2$, la notion de polygone canonique de Harder-Narasimhan permet d'écrire les champs classifiant les chtoucas de Drinfeld comme des réunions filtrantes d'ouverts de type fini. Quand il n'y a pas de structure de niveau, on présente ici une compactification modulaire lisse de chacun de ces ouverts, généralisant celles de Drinfeld en rang $2$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 11R58, 11G09, 14G35

Retrieve articles in all journals with MSC (1991): 11R58, 11G09, 14G35


Additional Information

Laurent Lafforgue
Affiliation: URA D0752 du CNRS, Université de Paris–Sud, Mathématiques, bât. 425, 91405 Orsay Cedex, France
Email: laurent.lafforgue@math.u-psud.fr

DOI: http://dx.doi.org/10.1090/S0894-0347-98-00272-0
PII: S 0894-0347(98)00272-0
Keywords: Corps de fonctions, champs modulaires de Drinfeld, chtoucas
Received by editor(s): June 9, 1997
Received by editor(s) in revised form: March 30, 1998
Article copyright: © Copyright 1998 American Mathematical Society