Factorization and approximation

problems for matrix functions

Author:
V. V. Peller

Journal:
J. Amer. Math. Soc. **11** (1998), 751-770

MSC (1991):
Primary 47B35, 30Dxx, 46Exx

DOI:
https://doi.org/10.1090/S0894-0347-98-00274-4

MathSciNet review:
1618768

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study maximizing vectors of Hankel operators with matrix-valued symbols. This study leads to a solution of the so-called recovery problem for unitary-valued functions and to a new approach to Wiener-Hopf factorizations for functions in a function space satisfying natural conditions. Finally, we improve earlier results of Peller and Young on hereditary properties of the operator of superoptimal approximation by analytic matrix functions.

**[AAK]**V.M. ADAMYAN, D.Z. AROV AND M.G. KREIN, Infinite Hankel block matrices and some related continuation problems,*Izv. Akad. Nauk Armyan. SSR Ser. Mat***6**(1971), 87-112. MR**45:7506****[BG1]**M.S. BUDJANU AND I.C. GOHBERG, General theorems on the factorization of matrix valued functions, I. The fundamental theorem,*Mat. Issled.***3**(1968), no. 2(8), 87-103 (Russian); English transl.,*Amer. Math. Soc. Transl.*(2)**102**(1973), 1-14. MR**41:4246a****[BG2]**M.S. BUDJANU AND I.C. GOHBERG, General theorems on the factorization of matrix valued functions, II. Some tests and their consequences,*Mat. Issled.***3**(1968), no. 3(8), 3-18 (Russian); English transl.,*Amer. Math. Soc. Transl.*(2)**102**(1973), 15-26. MR**41:4246b****[CG]**K. CLANCEY AND I. GOHBERG,*Factorization of matrix functions and singular integral operators*, Oper. Theory: Advances and Appl.,**3**, Birkhäuser Verlag, Basel-Boston-Stuttgart, 1981. MR**84a:47016****[CJ]**L. CARLESON AND S. JACOBS, Best uniform approximation by analytic functions,*Ark. Mat.***10**(1972), 219-229. MR**48:772****[DG]**H. DYM AND I. C. GOHBERG, Unitary interpolants, factorization indices and infinite Hankel block matrices,*J. Funct. Anal.***54**(1983), 229-289. MR**85m:47021a****[G]**I.C. GOHBERG, The factorization problem in normed rings, functions of isometric and symmetric operators and singular integral equations,*Uspekhi Mat. Nauk***19:1**(1964), 71-124 (Russian); English transl.,*Russian Math. Surveys***19:1**(1964), 63-114. MR**29:487****[GK]**I.C. GOHBERG AND M.G. KREIN, Systems of integral equations on a half line with kernels depending on the difference of arguments, Uspekhi Mat. Nauk**13:2**(1958), 3-72 (Russian); English transl.,*Amer. Math. Soc. Transl.***14**(1960), 217-287. MR**21:1506****[L]**P.B. LAX, Symmetrizable linear transformations,*Comm. Pure Appl. Math.***7**(1954), 633-647. MR**16:832d****[LS]**G.S. LITVINCHUK AND I.M. SPITKOVSKI,*Factorization of measurable matrix functions*, Oper. Theory: Advances and Appl.,**25**, Birkhäuser Verlag, Basel-Boston, MA, 1987. MR**90g:47030****[M]**N.I. MUSKHELISHVILI,*Singular integral equation. Boundary problems of function theory and their application to mathematical physics*, 2nd Ed., Fizmatgiz, Moscow, 1962 (Russian); English transl. of 1st ed., Nordhoff, Groningen, 1953. MR**15:434e****[N]**N.K. NIKOL'SKII,*Treatise on the shift operator. Spectral function theory*, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1986. MR**87i:47042****[Pa]**M. PAPADIMITRAKIS, On best uniform approximation by bounded analytic functions,*Bull. London Math. Soc.***28**(1996), 15-18. MR**96j:30054****[Pe1]**V.V. PELLER, A description of Hankel operators of class for , investigation of the rate of rational approximation and other applications,*Mat. Sb.***122**(1983), 481-510; English transl.,*Math. USSR-Sb.***50**(1985), 465-494. MR**85g:47041****[Pe2]**V.V. PELLER, Hankel operators and multivariate stationary processes,*Proc. Symp. Pure Math.***51**(1990), 357-371. MR**91m:47034****[Pe3]**V.V. PELLER, Hankel operators and continuity properties of best approximation operators,*Algebra i Analiz***2:1**(1990), 163-189; English transl. in*Leningrad Math. J.***2**(1991), 139-160. MR**91e:41043****[Pe4]**V.V. PELLER, Boundedness properties of the operators of best approximation by analytic and meromorphic functions,*Ark. Mat.***30**(1992), 331-343. MR**95f:46038****[Pe5]**V.V. PELLER, Approximation by analytic operator-valued functions,*Harmonic analysis and operator theory (Caracas, 1994)*, 431-448, Contemp. Math.,**189**, Amer. Math. Soc., Providence, RI, 1995. MR**96i:47048****[PK]**V.V. PELLER AND S.V. KHRUSCHEV, Hankel operators, best approximation and stationary Gaussian processes,*Russian Math. Surveys***37**(1982), 53-124. MR**84e:47036****[PY1]**V.V. PELLER AND N.J. YOUNG, Superoptimal analytic approximations of matrix functions,*J. Functional Analysis***120**(1994), 300-343. MR**94m:47030****[PY2]**V.V. PELLER AND N.J. YOUNG, Construction of superoptimal approximation,*Math. Control Signals Systems***8**(1995), 118-137.**[PY3]**V.V. PELLER AND N.J. YOUNG, Continuity properties of best analytic approximation,*J. Reine Angew. Math.***483**(1997), 1-22. MR**97m:47031****[R]**YU.A. ROZANOV,*Stationary stochastic processes*, Fizmatgiz, Moscow, 1963 (Russian). MR**28:2580****[S]**I.B. SIMONENKO, Some general problems of the theory of the Riemann boundary-value problem,*Izv. Akad. Nauk SSSR, Ser. Mat.***32**(1968), 1138-1146 (Russian). MR**38:3447****[To]**V.A. TOLOKONNIKOV, Generalized Douglas algebras,*Algebra i Analiz***3**(1991), 231-252 (Russian). MR**92m:46077****[Tr]**S.R. TREIL, On superoptimal approximation by analytic and meromorphic matrix-valued functions,*J. Functional Analysis***131**(1995), 386-414. MR**96g:47011****[V]**N.P. VEKUA,*Systems of singular integral equations and some boundary problems*, GITTL, Moscow, 1950 (Russian); English transl., Noordhoff, Groningen, 1967. MR**13:247a**

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (1991):
47B35,
30Dxx,
46Exx

Retrieve articles in all journals with MSC (1991): 47B35, 30Dxx, 46Exx

Additional Information

**V. V. Peller**

Affiliation:
Department of Mathematics, Kansas State University, Manhattan, Kansas 66506

Email:
peller@math.ksu.edu

DOI:
https://doi.org/10.1090/S0894-0347-98-00274-4

Received by editor(s):
June 11, 1997

Additional Notes:
The author is partially supported by NSF grant DMS 9304011.

Article copyright:
© Copyright 1998
American Mathematical Society