Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Two geometric character formulas
for reductive Lie groups


Authors: Wilfried Schmid and Kari Vilonen
Journal: J. Amer. Math. Soc. 11 (1998), 799-867
MSC (1991): Primary 22Exx, 55-xx, 14-xx
DOI: https://doi.org/10.1090/S0894-0347-98-00275-6
MathSciNet review: 1612634
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove two formulas for the characters of representations of reductive groups. Both express the character of a representation $\pi $ in terms of the same geometric data attached to $\pi $. When specialized to the case of a compact Lie group, one of them reduces to Kirillov's character formula in the compact case, and the other, to an application of the Atiyah-Bott fixed point formula to the Borel-Weil realization of the representation $\pi $.


References [Enhancements On Off] (What's this?)

  • [A] M.Atiyah, Characters of semisimple Lie groups, lecture notes (1976), reprinted in Collected works of Michael Atiyah, vol 4, pp 491-557, Springer 1988. MR 91h:01094d
  • [B] A.Beilinson, Localization of representations of reductive Lie algebras, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), PWN, Warsaw, 1984, pp. 699-710. MR 86m:17007
  • [BB1] A.Beilinson and J.Bernstein, Localisations de $\mathfrak{g}$-modules, C. R. Acad. Sci. Paris 292 (1981), 15-18. MR 82k:14015
  • [BB2] A.Beilinson and J.Bernstein, A generalization of Casselman's submodule theorem, in: Representation Theory of Reductive Groups, Progress in Mathematics, Vol 40, Birkhäuser, Boston, 1983, pp. 35-52. MR 85e:22024
  • [BB3] A.Beilinson and J.Bernstein, Proof of Jantzen's conjecture, Advances in Soviet Mathematics 16 (1993), 1-50. MR 95a:2202
  • [BL] J.Bernstein and V.Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics 1578, Springer, 1994. MR 95k:55012
  • [BM] E.Bierstone and P.D.Milman, Semi-analytic and subanalytic sets, Publications Math. IHES 67 (1988), 5-42. MR 89k:32011
  • [BV] N.Berline and M.Vergne, Classes caracteristiques equivariantes. Formule de localisation en cohomologie equivariante, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), 539-541. MR 83m:58002
  • [C] J-Y.Charbonnel, Sur les semi-caracteres des groupes de Lie resolubles connexes, J. Funct. Anal. 41 (1981), 175-203. MR 83c:22011
  • [D1] M.Duflo, Representations of the fundamental series of a semisimple Lie group, Funkcional. Anal. i Prilo\v{z}en 4 (1970), 38-42 (Russian). MR 45:6975
  • [D2] M.Duflo, Théorie de Mackey pour les groupes de Lie algèbriques, Acta Math. 149 (1982), 153-213. MR 85h:22022
  • [FS] A.I.Fomin and N.N.\v{S}hapovalov, A certain property of the characters of irreducible representations of real semisimple Lie groups, Funkcional. Anal. i Prilo\v{z}en 8 (1974), 87-88 (Russian). MR 51:3357
  • [GM] M. Goresky and R. MacPherson, Local contribution to the Lefschetz fixed point formula, Inventiones Math. 111 (1993), 1-33. MR 94b:55009
  • [GS] P. Griffiths and W. Schmid, Locally homogeneous complex manifolds, Acta Math. 123 (1969), 253-302. MR 41:4587
  • [HC1] Harish-Chandra, On some applications of the universal enveloping algebra of a semisimple Lie algebra., Trans. AMS 70 (1951), 28-96. MR 13:428c
  • [HC2] Harish-Chandra, Representations of a semisimple Lie group on a Banach space I, Trans. AMS 75 (1953), 185-243. MR 15:100f
  • [HC3] Harish-Chandra, Representations of a semisimple Lie group III, Trans. AMS 76 (1954), 234-253. MR 16:11e
  • [HC4] Harish-Chandra, Invariant Eigendistributions on a Semisimple Lie Group, Trans. AMS 119 (1965), 457-508. MR 31:4862d
  • [HC5] Harish-Chandra, Discrete series for semisimple Lie groups I, Acta Math. 113 (1965), 241-318. MR 36:2744
  • [HC6] Harish-Chandra, Discrete series for semisimple Lie groups II, Acta Math. 116 (1966), 1-111. MR 36:2745
  • [HC7] Harish-Chandra, Harmonic analysis on real reductive groups I, the theory of the constant term, Jour. Func. Analysis 19 (1975), 104-204. MR 53:3201
  • [Hec] H.Hecht, Characters of some representations of Harish-Chandra, Math. Annalen 219 (1976), 213-226. MR 55:573
  • [HMSW1] H.Hecht, D.Mili\v{c}i\'{c}, W.Schmid and J.Wolf, Localization and standard modules for real semisimple Lie groups I: The duality theorem, Invent. Math. 90 (1987), 297-332. MR 89e:22025
  • [HMSW2] H.Hecht, D.Mili\v{c}i\'{c}, W.Schmid and J.Wolf, Localisation and standard modules for real semisimple Lie groups II: Irreducibility, vanishing theorems and classification, preprint.
  • [HS] H.Hecht and W.Schmid, Characters, asymptotics, and $\mathfrak{n}$-homology of Harish-Chandra modules, Acta Math. 151 (1983), 49-151. MR 84k:22026
  • [Hel] S.Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, 1978. MR 80k:53081
  • [Hi] T.Hirai, The characters of some induced representations of Lie groups, J. Math. Kyoto Univ. 8 (1968), 313-363. MR 39:354
  • [Hn1] H.Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II, Ann. of Math. 79 (1964), 109-326. MR 33:7333
  • [Hn2] H.Hironaka, Subanalytic sets, Number Theory, Algebraic Geometry, and Commutative Algebra, Kinokuniya, Tokyo, 1973, pp. 453-493. MR 51:13275
  • [HK] R.Hotta and M.Kashiwara, The invariant holonomic system on a semisimple Lie algebra, Inventiones Math. 75 (1984), 327-358. MR 87i:22041
  • [Ka1] M.Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. RIMS, Kyoto University 20 (1984), 319 - 365. MR 86j:58142
  • [Ka2] M.Kashiwara, Index theorem for constructible sheaves, Astérisque 130 (1985), 193 - 209. MR 87f:58160
  • [Ka3] M.Kashiwara, Open problems in group representation theory, Proceedings of Taniguchi Symposium held in 1986, RIMS preprint 569, Kyoto University, 1987.
  • [Ka4] M.Kashiwara, Character, character cycle, fixed point theorem, and group representations, Advanced Studies in Pure Mathematics, vol. 14, Kinokuniya, Tokyo, 1988, pp. 369-378. MR 91h:22029
  • [Ka5] M.Kashiwara, The invariant holonomic system on a semisimple Lie group, Algebraic analysis, Vol. I, Academic Press, Boston, 1988, pp. 277-286. MR 90k:22021
  • [Ka6] M.Kashiwara, $\mathcal{D}$-modules and Representation Theory of Lie Groups, RIMS preprint 940, Kyoto University, 1993.
  • [KSa] M.Kashiwara and P.Schapira, Sheaves on manifolds, Springer, 1990.
  • [KSd] M.Kashiwara and W.Schmid, Quasi-equivariant $\mathcal{D}$-modules, equivariant derived category, and representations of reductive Lie groups, Lie Theory and Geometry, in Honor of Bertram Kostant, Progress in Mathematics, Birkhäuser, 1994, pp. 457-488.
  • [Ki1] A.A.Kirillov, Characters of unitary representations of Lie groups, Funkcional. Anal. i Prilo\v{z}en 2 (1968), 40-55 (Russian). MR 38:4615
  • [Ki2] A.A.Kirillov, Characters of unitary representations of Lie groups. Reduction theorems, Funkcional. Anal. i Prilo\v{z}en 3 (1969), 36-47 (Russian). MR 40:1538
  • [Ki3] A.A.Kirillov, Elements of the Theory of Representations, Springer, 1976. MR 54:447
  • [Ma] T.Matsuki, Orbits on affine symmetric spaces under the action of parabolic subgroups, Hiroshima Math. Jour. 12 (1982), 307-320. MR 83k:53072
  • [Me] Z.Mebkhout, Une équivalence de catégories - Une autre équivalence de catégories, Comp. Math. 51 (1984), 55 - 64. MR 85k:58072; MR 85k:58073
  • [Mi] D.Mili\v{c}i\'{c}, Localization and Representation Theory of Reductive Lie Groups, preliminary manuscript (available at www.math.utah.edu/~milicic/), 1993.
  • [MUV] I.Mirkovi\'{c}, T.Uzawa, and K.Vilonen, Matsuki Correspondence for Sheaves, Inventiones Math. 109 (1992), 231-245. MR 93k:22011
  • [MV] I.Mirkovi\'{c} and K.Vilonen, Characteristic varieties of character sheaves, Inventiones Math. 93 (1988), 405-418. MR 89i:20066
  • [Os] M.S.Osborne, Lefschetz formulas on nonelliptic complexes, Thesis, Yale University 1972. Reprinted in: Representation Theory and Harmonic Analysis on Semisimple Lie Groups, Mathematical Surveys and Monographs 31, AMS, Providence 1989, pp 171-222. MR 90k:22022
  • [OM] T.Oshima and T.Matsuki, A description of discrete series for semisimple symmetric spaces, Advanced Studies in Pure Math. 4 (1984), 331-390. MR 87m:22042
  • [R1] W. Rossmann, Kirillov's Character Formula for Reductive Lie Groups, Inventiones Math. 48 (1978), 207-220. MR 81g:22012
  • [R2] W.Rossmann, Characters as contour integrals, Lecture Notes in Mathematics 1077, Springer, 1984, pp. 375-388. MR 86e:22024
  • [R3] W.Rossmann, Invariant Eigendistributions on a Semisimple Lie Algebra and Homology Classes on the Conormal Variety I, II, Jour. Func. Anal. 96 (1991), 130-193. MR 92g:22033; MR 92g:22034
  • [S1] W.Schmid, Homogenous complex manifolds and representations of semisimple Lie groups, thesis, Berkeley 1967. Reprinted in ``Representation theory and harmonic analysis on semisimple Lie groups", Mathematical Surveys and Monographs 31, AMS, Providence, RI, 1989, 223-286. MR 90i:22025
  • [S2] W.Schmid, Some properties of square-integrable representations of semisimple Lie groups, Ann. of Math. 102 (1975), 535-564. MR 58:28303
  • [S3] W.Schmid, Two character identities for semisimple Lie groups, Non-Commutative Harmonic Analysis, Marseille-Luminy 1976, Lecture Notes in Mathematics 1578, Springer, 1977, pp. 196-225. MR 58:22405
  • [S4] W.Schmid, Construction and classification of irreducible Harish-Chandra modules, Harmonic Analysis on Reductive Groups, Progress in Mathematics 101, Birkhäuser, pp. 235-275. MR 93j:22028
  • [S5] W.Schmid, Character formulas and localization of integrals, Proceedings of the conference on symplectic geometry and mathematical physics, Ascona 1996, to appear.
  • [SV1] W.Schmid and K.Vilonen, Characters, Fixed Points and Osborne's Conjecture, Representation Theory of Groups and Algebras, Contemp. Math. 145, 1993, pp. 287-303. MR 95a:22020
  • [SV2] W.Schmid and K.Vilonen, Weyl group actions on Lagrangian cycles and Rossmann's formula, Proceedings of NATO Advanced Research Conference on Mathematical Physics and Group Theory, Kluwer Academic Press, 1994, pp. 242-250. CMP 95:05
  • [SV3] W.Schmid and K.Vilonen, Characters, characteristic cycles and nilpotent orbits, Geometry, Topology, and Physics for Raoul Bott, International Press, 1995, pp. 329-340. MR 96g:22021
  • [SV4] W.Schmid and K.Vilonen, Characteristic cycles of constructible sheaves, Inventiones Math. 124 (1996), 451-502. MR 96k:32016
  • [SW] W.Schmid and J.Wolf, Geometric quantization and derived functor modules for semisimple Lie groups, Jour. Funct. Anal. 90 (1990), 48-112. MR 91j:22012
  • [V] D.Vogan, The algebraic structure of the representations of semisimple Lie groups I, Ann. of Math. 109 (1979), 1-60. MR 81j:22020
  • [W] J.Wolf, The action of a real semisimple group on a complex flag manifold. I. Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc. 75 (1969), 1121-1237. MR 40:4477

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 22Exx, 55-xx, 14-xx

Retrieve articles in all journals with MSC (1991): 22Exx, 55-xx, 14-xx


Additional Information

Wilfried Schmid
Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
Email: schmid@math.harvard.edu

Kari Vilonen
Affiliation: Department of Mathematics, Brandeis University, Waltham, Massachusetts 02254
Email: vilonen@math.brandeis.edu

DOI: https://doi.org/10.1090/S0894-0347-98-00275-6
Received by editor(s): July 24, 1997
Additional Notes: The first author was partially supported by the NSF
The second author was partially supported by the NSA and NSF
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society