Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Regularity of the free boundary
for the porous medium equation


Authors: P. Daskalopoulos and R. Hamilton
Journal: J. Amer. Math. Soc. 11 (1998), 899-965
MSC (1991): Primary 35Jxx
DOI: https://doi.org/10.1090/S0894-0347-98-00277-X
MathSciNet review: 1623198
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the regularity of the free boundary for solutions of the porous medium equation $u_{t}=\Delta u^{m}$, $m >1$, on ${\mathcal{R}}^{2} \times [0,T]$, with initial data $u^{0}=u(x,0)$ nonnegative and compactly supported. We show that, under certain assumptions on the initial data $u^{0}$, the pressure $f=m\, u^{m-1}$ will be smooth up to the interface $\Gamma = \partial \{ u >0 \}$, when $0<t\leq T$, for some $T >0$. As a consequence, the free-boundary $\Gamma $ is smooth.


References [Enhancements On Off] (What's this?)

  • [A] S. Angenent, Analyticity of the interface of the porous media equation after the waiting time, Proc. Amer. Math. Soc. 102 (1988), N2, 329-336 MR 89f:35103
  • [A1] D.G. Aronson, Regularity properties of flows through porous media, SIAM J. Appl. Math. 17 (1969), 461-467. MR 40:571
  • [A2] D.G. Aronson, Regularity properties of flows through porous media: A counterexample, SIAM J. Appl. Math. 19 (1970), 299-307. MR 42:683
  • [A3] D.G. Aronson, Regularity properties of flows through porous media: The interface, Arch. Rational Mech. Anal. 37 (1970), 1-10. MR 41:656
  • [ACV] D.G. Aronson, L.A. Caffarelli, J.L. Vázquez, Interfaces with a corner-point in one-dimensional porous medium flow, Comm. Pure and Appl. Math. 38 (1985), 375-404. MR 86h:35070
  • [AV] D. Aronson, J.L. Vázquez, Eventual regularity and concavity for flows in one dimensional porous media, Arch. Rational Mech. Anal. 99 (1987), 329-348. MR 89d:35081
  • [C] L. Caffarelli, Interior a priori estimates for solutions of fully non-linear equations, Ann. of Math. 130 (1989), 189-213. MR 90i:35046
  • [CF1] L.A. Caffarelli and A. Friedman, Regularity of the free boundary for the one-dimensional flow of gas in a porous medium, Amer. J. Math. 101 (1979), 1193-1218. MR 80k:76072
  • [CF2] L.A. Caffarelli and A. Friedman, Regularity of the free boundary of a gas flow in an n-dimensional porous medium, Ind. Univ. Math. J. 29 (1980), 361-391. MR 82a:35096
  • [CVW] L.A. Caffarelli, J.L. Vázquez, N.I. Wolanski, Lipschitz continuity of solutions and interfaces of the n-dimensional porous medium equation, Ind. Univ. Math. J. 36 (1987), 373-401. MR 88k:35221
  • [CW] L.A. Caffarelli, N.I. Wolanski, $C^{1,\alpha }$ regularity of the free boundary for the n-dimensional porous media equation, Comm. Pure and Appl. Math. 43 (1990), 885-902. MR 91h:35332
  • [HK] K. Höllig, H.O. Kreiss, $C^{\infty }$ regularity for the porous medium equation, Univ. of Winsconsin Madison, Computer Scienced Dept., Technical report # 600.
  • [K] B. Knerr, The porous medium equation in one dimension, Trans. Amer. Math. Soc. 234 (1977), 381-415. MR 58:11917
  • [KN] J.J. Kohn, L. Nirenberg, Degenerate elliptic-parabolic equations of second order, Comm. Pure and Appl. Math. 20 (1967), 797-872. MR 38:2437
  • [S1] M. Safonov On the classical solution of Bellman's elliptic equations, Dokl. Akad. Nauk SSSR 278 (1984), N4, 810-813 = Soviet Math. Dokl. 30 (1984), N2, 482-485 MR 86f:35081
  • [S2] M. Safonov On the classical solution of nonlinear elliptic equations of second order, Izv. Akad. Nauk SSSR. Ser. Mat. 52 (1988), N6, 1272-1287 = Math. USSR Izvestiya, 33 (1989), N3, 597-612 MR 90d:35104
  • [W1] L. Wang On the regularity theory of fully nonlinear parabolic equations I, Comm. Pure and Appl. Math., 45, 1992, N1, 27-76. MR 92m:35126
  • [W2] L.Wang On the regularity theory of fully nonlinear parabolic equations II, Comm. Pure and Appl. Math. 45, 1992, N2, 141-178. MR 92m:35127

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 35Jxx

Retrieve articles in all journals with MSC (1991): 35Jxx


Additional Information

P. Daskalopoulos
Affiliation: Department of Mathematics, University of California, Irvine, California 92697-3875
Email: pdaskalo@math.uci.edu

R. Hamilton
Affiliation: Department of Mathematics, University of California at San Diego, La Jolla, California 92093-0001

DOI: https://doi.org/10.1090/S0894-0347-98-00277-X
Keywords: Porous medium equation, free-boundary, $C^{\infty }$-regularity
Received by editor(s): January 19, 1998
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society