On the optimal local regularity

for the Yang-Mills equations in

Authors:
Sergiu Klainerman and Daniel Tataru

Journal:
J. Amer. Math. Soc. **12** (1999), 93-116

MSC (1991):
Primary 58E15, 35B65, 35Q40

DOI:
https://doi.org/10.1090/S0894-0347-99-00282-9

MathSciNet review:
1626261

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of the paper is to develop the Fourier Analysis techniques needed in the study of optimal well-posedness and global regularity properties of the Yang-Mills equations in Minkowski space-time , for the case of the critical dimension . We introduce new functional spaces and prove new bilinear estimates for solutions of the homogeneous wave equation, which can be viewed as generalizations of the well-known Strichartz-Pecher inequalities.

**[B]**J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, I, II,*Geom. Funct. Analysis***3**(1993), 107-156, 202-262. MR**95d:35160a**, MR**95d:35160b****[Br]**P. Brenner, On estimates for the wave equations,*Math. Z.***145**(1975), 251-254. MR**52:8658****[G-V]**J. Ginibre, G. Velo, Generalized Strichartz inequality for the wave equation,*J. Funct. Anal.***133**(1995), no. 1, 50-68. MR**97a:46047****[K-T]**M. Keel, T. Tao, Endpoints Strichartz Estimates, to appear in Amer. Jour. of Math.**[K-P-V]**C. Kenig, G. Ponce, L. Vega, The Cauchy problem for the Korteweg-De Vries equation in Sobolev spaces of negative indices,*Duke Math Journal***71**, No. 1, pp. 1-21 (1994). MR**94g:35196****[K-M1]**S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem,*Comm. Pure Appl. Math***46**(1993), 1221-1268. MR**94h:35137****[K-M2]**S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy,*Duke Math. J.***74**(1994), no. 1, 19-44. MR**95f:35210****[K-M3]**S. Klainerman and M. Machedon, Finite energy solutions for the Yang-Mills solutions in ,*Annals of Math.***142**, 1995, 39-119. MR**96i:58167****[K-M4]**S. Klainerman and M. Machedon, Smoothing estimates for null forms and applications,*Duke Math J.***81**(1995), 99-103. MR**97h:35022****[K-M5]**S. Klainerman and M. Machedon, with appendices by J. Bourgain and D. Tataru, Remark on Strichartz type inequalities,*International Math. Research Notices*, 1996, no. 5, 201-220. MR**97g:46037****[K-M6]**S. Klainerman and M. Machedon, Estimates for null forms and the spaces ,*International Math. Research Notices***17**(1996), 853-866. CMP**97:04****[K-M7]**S. Klainerman and M. Machedon, On the regularity properties of a model problem related to wave maps,*Duke Math. Jour.***87**(1997), no. 3, 553-589. MR**98e:35118****[K-M8]**S. Klainerman and M. Machedon, On the optimal local regularity for gauge field theories,*Differential and Integral Equations***10**(1997), no. 6, 1019-1030. CMP**98:09****[K-S]**S. Klainerman and S. Selberg, Remark on the optimal regularity for equations of Wave Maps type,*Comm. P.D.E.***22**(1997), no. 5-6, 901-918. CMP**97:13****[S1]**R. S. Strichartz, Restrictions of Fourier transform to quadratic surfaces and decay of solutions of Wave Equations,*Duke Math. J.***44**(1977), 705-714. MR**58:23577****[Ta]**D. Tataru, On the spaces and unique continuation for semilinear hyperbolic equations,*Comm. PDE***21**(1996), no. 5-6. MR**97i:35012**

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (1991):
58E15,
35B65,
35Q40

Retrieve articles in all journals with MSC (1991): 58E15, 35B65, 35Q40

Additional Information

**Sergiu Klainerman**

Affiliation:
Department of Mathematics, Princeton University, Princeton, New Jersey 08544

**Daniel Tataru**

Affiliation:
Department of Mathematics, Princeton University, Princeton, New Jersey 08544

DOI:
https://doi.org/10.1090/S0894-0347-99-00282-9

Keywords:
Yang-Mills,
well-posedness,
regularity,
Strichartz

Received by editor(s):
April 1, 1997

Received by editor(s) in revised form:
March 3, 1998

Additional Notes:
The first author’s research was partially supported by NSF grant DMS-9400258.

The second author’s research was partially supported by NSF grant DMS-9622942 and by an Alfred P. Sloan fellowship.

Article copyright:
© Copyright 1999
American Mathematical Society