On the optimal local regularity

for the Yang-Mills equations in

Authors:
Sergiu Klainerman and Daniel Tataru

Journal:
J. Amer. Math. Soc. **12** (1999), 93-116

MSC (1991):
Primary 58E15, 35B65, 35Q40

MathSciNet review:
1626261

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of the paper is to develop the Fourier Analysis techniques needed in the study of optimal well-posedness and global regularity properties of the Yang-Mills equations in Minkowski space-time , for the case of the critical dimension . We introduce new functional spaces and prove new bilinear estimates for solutions of the homogeneous wave equation, which can be viewed as generalizations of the well-known Strichartz-Pecher inequalities.

**[B]**J. Bourgain,*Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations*, Geom. Funct. Anal.**3**(1993), no. 2, 107–156. MR**1209299**, 10.1007/BF01896020

J. Bourgain,*Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation*, Geom. Funct. Anal.**3**(1993), no. 3, 209–262. MR**1215780**, 10.1007/BF01895688**[Br]**Philip Brenner,*On 𝐿_{𝑝}-𝐿_{𝑝′} estimates for the wave-equation*, Math. Z.**145**(1975), no. 3, 251–254. MR**0387819****[G-V]**J. Ginibre and G. Velo,*Generalized Strichartz inequalities for the wave equation*, J. Funct. Anal.**133**(1995), no. 1, 50–68. MR**1351643**, 10.1006/jfan.1995.1119**[K-T]**M. Keel, T. Tao, Endpoints Strichartz Estimates, to appear in Amer. Jour. of Math.**[K-P-V]**Carlos E. Kenig, Gustavo Ponce, and Luis Vega,*The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices*, Duke Math. J.**71**(1993), no. 1, 1–21. MR**1230283**, 10.1215/S0012-7094-93-07101-3**[K-M1]**S. Klainerman and M. Machedon,*Space-time estimates for null forms and the local existence theorem*, Comm. Pure Appl. Math.**46**(1993), no. 9, 1221–1268. MR**1231427**, 10.1002/cpa.3160460902**[K-M2]**S. Klainerman and M. Machedon,*On the Maxwell-Klein-Gordon equation with finite energy*, Duke Math. J.**74**(1994), no. 1, 19–44. MR**1271462**, 10.1215/S0012-7094-94-07402-4**[K-M3]**S. Klainerman and M. Machedon,*Finite energy solutions of the Yang-Mills equations in 𝐑³⁺¹*, Ann. of Math. (2)**142**(1995), no. 1, 39–119. MR**1338675**, 10.2307/2118611**[K-M4]**S. Klainerman and M. Machedon,*Smoothing estimates for null forms and applications*, Duke Math. J.**81**(1995), no. 1, 99–133 (1996). A celebration of John F. Nash, Jr. MR**1381973**, 10.1215/S0012-7094-95-08109-5**[K-M5]**Sergiu Klainerman and Matei Machedon,*Remark on Strichartz-type inequalities*, Internat. Math. Res. Notices**5**(1996), 201–220. With appendices by Jean Bourgain and Daniel Tataru. MR**1383755**, 10.1155/S1073792896000153**[K-M6]**S. Klainerman and M. Machedon, Estimates for null forms and the spaces ,*International Math. Research Notices***17**(1996), 853-866. CMP**97:04****[K-M7]**Sergiu Klainerman and Matei Machedon,*On the regularity properties of a model problem related to wave maps*, Duke Math. J.**87**(1997), no. 3, 553–589. MR**1446618**, 10.1215/S0012-7094-97-08718-4**[K-M8]**S. Klainerman and M. Machedon, On the optimal local regularity for gauge field theories,*Differential and Integral Equations***10**(1997), no. 6, 1019-1030. CMP**98:09****[K-S]**S. Klainerman and S. Selberg, Remark on the optimal regularity for equations of Wave Maps type,*Comm. P.D.E.***22**(1997), no. 5-6, 901-918. CMP**97:13****[S1]**Robert S. Strichartz,*Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations*, Duke Math. J.**44**(1977), no. 3, 705–714. MR**0512086****[Ta]**Daniel Tataru,*The 𝑋^{𝑠}_{𝜃} spaces and unique continuation for solutions to the semilinear wave equation*, Comm. Partial Differential Equations**21**(1996), no. 5-6, 841–887. MR**1391526**, 10.1080/03605309608821210

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (1991):
58E15,
35B65,
35Q40

Retrieve articles in all journals with MSC (1991): 58E15, 35B65, 35Q40

Additional Information

**Sergiu Klainerman**

Affiliation:
Department of Mathematics, Princeton University, Princeton, New Jersey 08544

**Daniel Tataru**

Affiliation:
Department of Mathematics, Princeton University, Princeton, New Jersey 08544

DOI:
https://doi.org/10.1090/S0894-0347-99-00282-9

Keywords:
Yang-Mills,
well-posedness,
regularity,
Strichartz

Received by editor(s):
April 1, 1997

Received by editor(s) in revised form:
March 3, 1998

Additional Notes:
The first author’s research was partially supported by NSF grant DMS-9400258.

The second author’s research was partially supported by NSF grant DMS-9622942 and by an Alfred P. Sloan fellowship.

Article copyright:
© Copyright 1999
American Mathematical Society