Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

Modularity of certain potentially Barsotti-Tate Galois representations


Authors: Brian Conrad, Fred Diamond and Richard Taylor
Journal: J. Amer. Math. Soc. 12 (1999), 521-567
MSC (1991): Primary 11F80; Secondary 11G18
MathSciNet review: 1639612
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that certain potentially semistable lifts of modular mod$l$ representations are themselves modular. As a result we show that any elliptic curve over the rational numbers with conductor not divisible by 27 is modular.


References [Enhancements On Off] (What's this?)

  • 1. Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822
  • 2. Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956
  • 3. Henri Carayol, Sur les représentations 𝑙-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409–468 (French). MR 870690
  • 4. Henri Carayol, Sur les représentations galoisiennes modulo 𝑙 attachées aux formes modulaires, Duke Math. J. 59 (1989), no. 3, 785–801 (French). MR 1046750, 10.1215/S0012-7094-89-05937-1
  • 5. B. Conrad, Finite group schemes over bases with low ramification, to appear in Compositio Mathematica.
  • 6. B. Conrad, Ramified deformation problems, to appear in Duke Math. Journal.
  • 7. J. E. Cremona, Algorithms for modular elliptic curves, Cambridge University Press, Cambridge, 1992. MR 1201151
  • 8. Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders; Pure and Applied Mathematics; A Wiley-Interscience Publication. MR 632548
  • 9. H. Darmon, F. Diamond, R. Taylor, Fermat's Last Theorem, in Current Developments in Mathematics, 1995, International Press, 1996, pp. 1-154. CMP 98:02
  • 10. B. de Smit, H. Lenstra, Explicit construction of universal deformation rings, in Modular Forms and Fermat's Last Theorem (Boston, 1995), Springer-Verlag, 1997, pp. 313-326.
  • 11. Fred Diamond, The refined conjecture of Serre, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993), Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 22–37. MR 1363493
  • 12. Fred Diamond, On deformation rings and Hecke rings, Ann. of Math. (2) 144 (1996), no. 1, 137–166. MR 1405946, 10.2307/2118586
  • 13. Fred Diamond, The Taylor-Wiles construction and multiplicity one, Invent. Math. 128 (1997), no. 2, 379–391. MR 1440309, 10.1007/s002220050144
  • 14. Fred Diamond and Richard Taylor, Nonoptimal levels of mod 𝑙 modular representations, Invent. Math. 115 (1994), no. 3, 435–462. MR 1262939, 10.1007/BF01231768
  • 15. Fred Diamond and Richard Taylor, Lifting modular mod 𝑙 representations, Duke Math. J. 74 (1994), no. 2, 253–269. MR 1272977, 10.1215/S0012-7094-94-07413-9
  • 16. Bas Edixhoven, The weight in Serre’s conjectures on modular forms, Invent. Math. 109 (1992), no. 3, 563–594. MR 1176206, 10.1007/BF01232041
  • 17. N. Elkies, Elliptic and modular curves over finite fields, and related computational issues, to appear in Computational Perspectives on Number Theory (J. Teitelbaum, ed.).
  • 18. Jean-Marc Fontaine, Groupes 𝑝-divisibles sur les corps locaux, Société Mathématique de France, Paris, 1977 (French). Astérisque, No. 47-48. MR 0498610
  • 19. Jean-Marc Fontaine, Le corps des périodes 𝑝-adiques, Astérisque 223 (1994), 59–111 (French). With an appendix by Pierre Colmez; Périodes 𝑝-adiques (Bures-sur-Yvette, 1988). MR 1293971
  • 20. Jean-Marc Fontaine, Représentations 𝑝-adiques semi-stables, Astérisque 223 (1994), 113–184 (French). With an appendix by Pierre Colmez; Périodes 𝑝-adiques (Bures-sur-Yvette, 1988). MR 1293972
  • 21. Jean-Marc Fontaine, Sur certains types de représentations 𝑝-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate, Ann. of Math. (2) 115 (1982), no. 3, 529–577 (French). MR 657238, 10.2307/2007012
  • 22. Jean-Marc Fontaine and Barry Mazur, Geometric Galois representations, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993), Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 41–78. MR 1363495
  • 23. K. Fujiwara, Deformation rings and Hecke algebras in the totally real case, preprint.
  • 24. Paul Gérardin, Facteurs locaux des algèbres simples de rang 4. I, Reductive groups and automorphic forms, I (Paris, 1976/1977) Publ. Math. Univ. Paris VII, vol. 1, Univ. Paris VII, Paris, 1978, pp. 37–77 (French). MR 680785
  • 25. Groupes de monodromie en géométrie algébrique. I, Lecture Notes in Mathematics, Vol. 288, Springer-Verlag, Berlin-New York, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I); Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim. MR 0354656
  • 26. Schémas en groupes. I: Propriétés générales des schémas en groupes, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970 (French). MR 0274458
  • 27. Yasutaka Ihara, On modular curves over finite fields, Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973) Oxford Univ. Press, Bombay, 1975, pp. 161–202. MR 0399105
  • 28. Nicholas M. Katz and Barry Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985. MR 772569
  • 29. Nicholas M. Katz and William Messing, Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23 (1974), 73–77. MR 0332791
  • 30. B. Mazur, Deforming Galois representations, Galois groups over 𝑄 (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 16, Springer, New York, 1989, pp. 385–437. MR 1012172, 10.1007/978-1-4613-9649-9_7
  • 31. David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1970. MR 0282985
  • 32. Ravi Ramakrishna, On a variation of Mazur’s deformation functor, Compositio Math. 87 (1993), no. 3, 269–286. MR 1227448
  • 33. Michel Raynaud, Schémas en groupes de type (𝑝,…,𝑝), Bull. Soc. Math. France 102 (1974), 241–280 (French). MR 0419467
  • 34. Takeshi Saito, Modular forms and 𝑝-adic Hodge theory, Invent. Math. 129 (1997), no. 3, 607–620. MR 1465337, 10.1007/s002220050175
  • 35. Jean-Pierre Serre, Le problème des groupes de congruence pour SL2, Ann. of Math. (2) 92 (1970), 489–527 (French). MR 0272790
  • 36. Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331 (French). MR 0387283
  • 37. Jean-Pierre Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics, Vol. 5, Springer-Verlag, Berlin-New York, 1973. Cours au Collège de France, Paris, 1962–1963; Avec des textes inédits de J. Tate et de Jean-Louis Verdier; Quatrième édition. MR 0404227
  • 38. Jean-Pierre Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol. 42. MR 0450380
  • 39. Jean-Pierre Serre, Trees, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR 607504
  • 40. Jean-Pierre Serre, Sur les représentations modulaires de degré 2 de 𝐺𝑎𝑙(\overline{𝑄}/𝑄), Duke Math. J. 54 (1987), no. 1, 179–230 (French). MR 885783, 10.1215/S0012-7094-87-05413-5
  • 41. Jean-Pierre Serre and John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492–517. MR 0236190
  • 42. Goro Shimura, Algebraic number fields and symplectic discontinuous groups, Ann. of Math. (2) 86 (1967), 503–592. MR 0222048
  • 43. Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. Kan\cflex o Memorial Lectures, No. 1. MR 0314766
  • 44. J. T. Tate, 𝑝-divisible groups, Proc. Conf. Local Fields (Driebergen, 1966) Springer, Berlin, 1967, pp. 158–183. MR 0231827
  • 45. Richard Taylor and Andrew Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553–572. MR 1333036, 10.2307/2118560
  • 46. Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551. MR 1333035, 10.2307/2118559

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 11F80, 11G18

Retrieve articles in all journals with MSC (1991): 11F80, 11G18


Additional Information

Brian Conrad
Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
Email: bconrad@math.harvard.edu

Fred Diamond
Affiliation: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08854
Email: fdiamond@math.rutgers.edu

Richard Taylor
Email: rtaylor@math.harvard.edu

DOI: http://dx.doi.org/10.1090/S0894-0347-99-00287-8
Keywords: Hecke algebra, Galois representation, modular curves.
Received by editor(s): April 1, 1998
Received by editor(s) in revised form: September 1, 1998
Additional Notes: The first author was supported by an N.S.F. Postdoctoral Fellowship, and would like to thank the Institute for Advanced Study for its hospitality. The second author was at M.I.T. during part of the research, and for another part was visiting Université de Paris-Sud supported by the C.N.R.S. The third author was supported by a grant from the N.S.F. All of the authors are grateful to Centre Émile Borel at the Institut Henri Poincaré for its hospitality at the $p$-adic semester.
Article copyright: © Copyright 1999 American Mathematical Society