A converse to a theorem of Adamyan,

Arov and Krein

Authors:
J. Agler and N. J. Young

Journal:
J. Amer. Math. Soc. **12** (1999), 305-333

MSC (1991):
Primary 46E22; Secondary 47B38

MathSciNet review:
1643649

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A well known theorem of Akhiezer, Adamyan, Arov and Krein gives a criterion (in terms of the signature of a certain Hermitian matrix) for interpolation by a meromorphic function in the unit disc with at most poles subject to an -norm bound on the unit circle. One can view this theorem as an assertion about the Hardy space of analytic functions on the disc and its reproducing kernel. A similar assertion makes sense (though it is not usually true) for an *arbitrary* Hilbert space of functions. One can therefore ask for which spaces the assertion *is* true. We answer this question by showing that it holds precisely for a class of spaces closely related to .

**[AAK]**V. M. Adamjan, D. Z. Arov, and M. G. Kreĭn,*Analytic properties of the Schmidt pairs of a Hankel operator and the generalized Schur-Takagi problem*, Mat. Sb. (N.S.)**86(128)**(1971), 34–75 (Russian). MR**0298453****[Ag1]**J. Agler, Interpolation, preprint (1987).**[Ag2]**Jim Agler,*Nevanlinna-Pick interpolation on Sobolev space*, Proc. Amer. Math. Soc.**108**(1990), no. 2, 341–351. MR**986645**, 10.1090/S0002-9939-1990-0986645-2**[AY]**J. Agler and N. J. Young, Functions which are almost multipliers of Hilbert function spaces, to appear in*Proc. London Math. Soc.*CMP**98:06****[Ak]**N. I. Akhiezer, On a minimum problem in the theory of functions and on the number of roots of an algebraic equation which lie inside the unit circle,*Izv. Akad. Nauk SSSR***9**(1931) 1169-1189.**[Ar]**N. Aronszajn,*Theory of reproducing kernels*, Trans. Amer. Math. Soc.**68**(1950), 337–404. MR**0051437**, 10.1090/S0002-9947-1950-0051437-7**[BH]**Joseph A. Ball and J. William Helton,*A Beurling-Lax theorem for the Lie group 𝑈(𝑚,𝑛) which contains most classical interpolation theory*, J. Operator Theory**9**(1983), no. 1, 107–142. MR**695942****[CG]**Tiberiu Constantinescu and Aurelian Gheondea,*Minimal signature in lifting of operators. I*, J. Operator Theory**22**(1989), no. 2, 345–367. MR**1043732****[CS]**Mischa Cotlar and Cora Sadosky,*Nehari and Nevanlinna-Pick problems and holomorphic extensions in the polydisk in terms of restricted BMO*, J. Funct. Anal.**124**(1994), no. 1, 205–210. MR**1284610**, 10.1006/jfan.1994.1105**[DFT]**John C. Doyle, Bruce A. Francis, and Allen R. Tannenbaum,*Feedback control theory*, Macmillan Publishing Company, New York, 1992. MR**1200235****[DGK]**Ph. Delsarte, Y. Genin, and Y. Kamp,*On the role of the Nevanlinna-Pick problem in circuit and system theory*, Internat. J. Circuit Theory Appl.**9**(1981), no. 2, 177–187. MR**612269**, 10.1002/cta.4490090204**[FF]**Ciprian Foias and Arthur E. Frazho,*The commutant lifting approach to interpolation problems*, Operator Theory: Advances and Applications, vol. 44, Birkhäuser Verlag, Basel, 1990. MR**1120546****[G]**Keith Glover,*All optimal Hankel-norm approximations of linear multivariable systems and their 𝐿^{∞}-error bounds*, Internat. J. Control**39**(1984), no. 6, 1115–1193. MR**748558**, 10.1080/00207178408933239**[GRSW]**Israel Gohberg, Leiba Rodman, Tamir Shalom, and Hugo J. Woerdeman,*Bounds for eigenvalues and singular values of matrix completions*, Linear and Multilinear Algebra**33**(1993), no. 3-4, 233–249. MR**1334675**, 10.1080/03081089308818197**[H]**J. William Helton, Joseph A. Ball, Charles R. Johnson, and John N. Palmer,*Operator theory, analytic functions, matrices, and electrical engineering*, CBMS Regional Conference Series in Mathematics, vol. 68, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1987. MR**896034****[K]**Irving Kaplansky,*Linear algebra and geometry. A second course*, Allyn and Bacon, Inc., Boston, Mass., 1969. MR**0249444****[MS]**D. E. Marshall and C. Sundberg, Interpolating sequences for multipliers of the Dirichlet space, to appear.**[P]**G. Pick, Über die Beschränkungen analytischer Funktionen, welche durch vorgegebene Funktionswerte bewirkt werden,*Math. Ann.***77**(1916), 7-23.**[Q1]**Peter Quiggin,*For which reproducing kernel Hilbert spaces is Pick’s theorem true?*, Integral Equations Operator Theory**16**(1993), no. 2, 244–266. MR**1205001**, 10.1007/BF01358955**[Q2]**P. Quiggin, Generalisations of Pick's Theorem to Reproducing Kernel Hilbert Spaces, Ph.D. thesis, Lancaster University, 1994.**[S]**Donald Sarason,*Generalized interpolation in 𝐻^{∞}*, Trans. Amer. Math. Soc.**127**(1967), 179–203. MR**0208383**, 10.1090/S0002-9947-1967-0208383-8

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (1991):
46E22,
47B38

Retrieve articles in all journals with MSC (1991): 46E22, 47B38

Additional Information

**J. Agler**

Affiliation:
Department of Mathematics, University of California at San Diego, La Jolla, California 92093

Email:
jagler@ucsd.edu

**N. J. Young**

Affiliation:
Department of Mathematics, University of Newcastle, Newcastle upon Tyne NE1 7RU, England

Email:
N.J.Young@ncl.ac.uk

DOI:
https://doi.org/10.1090/S0894-0347-99-00291-X

Keywords:
Interpolation,
reproducing kernel,
multiplier,
Pick's theorem,
Adamyan-Arov-Krein theorem,
Akhiezer's theorem

Received by editor(s):
May 28, 1997

Additional Notes:
J. Agler’s research was supported by an NSF grant in Modern Analysis.

Article copyright:
© Copyright 1999
American Mathematical Society