A converse to a theorem of Adamyan,

Arov and Krein

Authors:
J. Agler and N. J. Young

Journal:
J. Amer. Math. Soc. **12** (1999), 305-333

MSC (1991):
Primary 46E22; Secondary 47B38

DOI:
https://doi.org/10.1090/S0894-0347-99-00291-X

MathSciNet review:
1643649

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A well known theorem of Akhiezer, Adamyan, Arov and Krein gives a criterion (in terms of the signature of a certain Hermitian matrix) for interpolation by a meromorphic function in the unit disc with at most poles subject to an -norm bound on the unit circle. One can view this theorem as an assertion about the Hardy space of analytic functions on the disc and its reproducing kernel. A similar assertion makes sense (though it is not usually true) for an *arbitrary* Hilbert space of functions. One can therefore ask for which spaces the assertion *is* true. We answer this question by showing that it holds precisely for a class of spaces closely related to .

**[AAK]**V. M. Adamyan, D. Z. Arov and M. G. Krein, Analytic properties of Schmidt pairs of a Hankel operator and generalized Schur-Takagi problem,*Mat. Sbornik***86**(1971), 33-73. MR**45:7505****[Ag1]**J. Agler, Interpolation, preprint (1987).**[Ag2]**J. Agler, Nevanlinna-Pick interpolation on Sobolev space,*Proc. Amer. Math. Soc.***108**(1990) 341-351. MR**90f:30041****[AY]**J. Agler and N. J. Young, Functions which are almost multipliers of Hilbert function spaces, to appear in*Proc. London Math. Soc.*CMP**98:06****[Ak]**N. I. Akhiezer, On a minimum problem in the theory of functions and on the number of roots of an algebraic equation which lie inside the unit circle,*Izv. Akad. Nauk SSSR***9**(1931) 1169-1189.**[Ar]**N. Aronszajn, Theory of reproducing kernels,*Trans. Amer. Math. Soc.***68**(1950), 337-404. MR**14:479c****[BH]**J. A. Ball and J. W. Helton, A Beurling-Lax theorem for the Lie group which contains most classical interpolation theory,*J. Operator Theory***9**(1983) 107-142. MR**84m:47046****[CG]**T. Constantinescu and A. Gheondea, Minimal signature in lifting of operators I,*J. Operator Theory***22**(1989) 345-367. MR**91b:47013****[CS]**M. Cotlar and C. Sadosky, Nehari and Nevalinna-Pick problems and holomorphic extensions in the polydisk in terms of restricted BMO,*J. Functional Analysis***124**(1994) 205-210 . MR**95f:47047****[DFT]**J. C. Doyle, B. A. Francis and A. R. Tannenbaum,*Feedback Control Theory*, Maxwell-Macmillan Publishing Co., New York 1992. MR**93k:93002****[DGK]**P. Delsarte, Y. Genin and Y. Kamp, On the role of the Nevanlinna-Pick problem in circuit and system theory,*Circuit Theory and Applications***9**(1981) 177-187. MR**82d:94052****[FF]**C. Foias and A. E. Frazho,*The Commutant Lifting Approach to Interpolation Problems*, OT44, Birkhäuser Verlag, Basel 1986. MR**92k:47033****[G]**K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their error bounds,*Int. J. Control***39**(1984) 1115-1193. MR**86a:93029****[GRSW]**I. Gohberg, L. Rodman, T. Shalom and H. J. Woerdemann, Bounds for eigenvalues and singular values of matrix completions,*Linear and Multilinear Algebra***33**(1993) 233-249. MR**96h:15019****[H]**J. W. Helton,*Operator theory, analytic functions, matrices and electrical engineering,*, CBMS Regional Conference Series No. 68, AMS, Providence 1987. MR**89f:47001****[K]**I. Kaplansky,*Linear Algebra and Geometry*, Chelsea Publishing Co., New York, 1969. MR**40:2689****[MS]**D. E. Marshall and C. Sundberg, Interpolating sequences for multipliers of the Dirichlet space, to appear.**[P]**G. Pick, Über die Beschränkungen analytischer Funktionen, welche durch vorgegebene Funktionswerte bewirkt werden,*Math. Ann.***77**(1916), 7-23.**[Q1]**P. Quiggin, For which reproducing kernel Hilbert spaces is Pick's theorem true?*Integral Equations and Operator Theory***16**(1993), 244-266. MR**94a:47026****[Q2]**P. Quiggin, Generalisations of Pick's Theorem to Reproducing Kernel Hilbert Spaces, Ph.D. thesis, Lancaster University, 1994.**[S]**D. Sarason, Generalized interpolation in ,*Trans. Amer. Math. Soc.***127**(1967) 179-203. MR**34:8193**

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (1991):
46E22,
47B38

Retrieve articles in all journals with MSC (1991): 46E22, 47B38

Additional Information

**J. Agler**

Affiliation:
Department of Mathematics, University of California at San Diego, La Jolla, California 92093

Email:
jagler@ucsd.edu

**N. J. Young**

Affiliation:
Department of Mathematics, University of Newcastle, Newcastle upon Tyne NE1 7RU, England

Email:
N.J.Young@ncl.ac.uk

DOI:
https://doi.org/10.1090/S0894-0347-99-00291-X

Keywords:
Interpolation,
reproducing kernel,
multiplier,
Pick's theorem,
Adamyan-Arov-Krein theorem,
Akhiezer's theorem

Received by editor(s):
May 28, 1997

Additional Notes:
J. Agler’s research was supported by an NSF grant in Modern Analysis.

Article copyright:
© Copyright 1999
American Mathematical Society