Pythagoras numbers of fields

Author:
Detlev W. Hoffmann

Journal:
J. Amer. Math. Soc. **12** (1999), 839-848

MSC (1991):
Primary 11E04, 11E10, 11E25, 12D15

DOI:
https://doi.org/10.1090/S0894-0347-99-00301-X

Published electronically:
April 13, 1999

MathSciNet review:
1670858

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A field of characteristic is said to have finite Pythagoras number if there exists an integer such that each nonzero sum of squares in can be written as a sum of squares, in which case the Pythagoras number of is defined to be the least such integer. As a consequence of Pfister's results on the level of fields, of a nonformally real field is always of the form or , and all integers of such type can be realized as Pythagoras numbers of nonformally real fields. Prestel showed that values of the form , , and can always be realized as Pythagoras numbers of formally real fields. We will show that in fact to every integer there exists a formally real field with . As a refinement, we will show that if and are integers such that , then there exists a uniquely ordered field with and (resp. ), where (resp. ) denotes the supremum of the dimensions of anisotropic forms over which are torsion in the Witt ring of (resp. which are indefinite with respect to each ordering on ).

**[A]**E. Artin,*Über die Zerlegung definiter Funktionen in Quadrate*, Abh. Math. Semin. Hamburg. Univ.**5**(1927) 100-115.**[CEP]**J.W.S. Cassels, W.J. Ellison, and A. Pfister,*On sums of squares and on elliptic curves over function fields*, J. Number Theory**3**(1971) 125-149. MR**45:1863****[EL]**R. Elman, T.Y. Lam,*Pfister forms and -theory of fields*, J. Algebra**23**(1972) 181-213. MR**46:1882****[ELP]**R. Elman, T.Y. Lam, and A. Prestel,*On some Hasse principles over formally real fields*. Math. Z.**134**(1973) 291-301. MR**48:8384****[ELW]**R. Elman, T.Y. Lam, and A.R. Wadsworth,*Orderings under field extensions*, J. Reine Angew. Math.**306**(1979) 7-27. MR**80e:12029****[EP]**R. Elman and A. Prestel,*Reduced stability of the Witt ring of a field and its Pythagorean closure*, Amer. J. Math.**106**(1983) 1237-1260. MR**86f:11030****[H1]**D.W. Hoffmann,*Isotropy of quadratic forms over the function field of a quadric*, Math. Z.**220**(1995) 461-476. MR**96k:11041****[H2]**-,*Twisted Pfister forms*, Doc. Math. J. DMV**1**(1996) 67-102. MR**97d:11065****[H3]**-,*On Elman and Lam's filtration of the -invariant*, J. Reine Angew. Math.**495**(1998), 175-186. MR**99d:11037****[Hor]**E.A.M. Hornix,*Formally real fields with prescribed invariants in the theory of quadratic forms*, Indag. Math.**2**(1991) 65-78. MR**92f:11055****[I]**O.T. Izhboldin,*On the isotropy of quadratic forms over the function field of a quadric*, Algebra i Analiz.**10**(1998), 32-57. (Russian). English transl. to appear in St. Petersburg Math. J.**10**(1999). CMP**98:12****[K]**M. Knebusch,*Generic splitting of quadratic forms.*II, Proc. London Math. Soc. (1977) 1-31. MR**55:379****[L1]**T.Y. Lam,*The Algebraic Theory of Quadratic Forms*, Reading, Massachusetts: Benjamin 1973 (revised printing 1980). MR**53:277****[L2]**-,*Some consequences of Merkurjev's work on function fields*, Preprint 1989.**[M]**A.S. Merkurjev,*Simple algebras and quadratic forms*, Izv. Akad. Nauk. SSSR**55**(1991) 218-224. (English translation: Math. USSR Izvestiya**38**(1992) 215-221.) MR**93b:16025****[Pe]**M. Peters,*Summe von Quadraten in Zahlringen*, J. Reine Angew. Math.**268/269**(1974) 318-323. MR**50:4551****[Pf]**A. Pfister,*Quadratic forms with applications to algebraic geometry and topology*, London Math. Soc. Lect. Notes**217**, Cambridge University Press 1995. MR**97c:11046****[Pr]**A. Prestel,*Remarks on the Pythagoras and Hasse number of real fields*, J. Reine Angew. Math.**303/304**(1978) 284-294. MR**80d:12020****[Sc]**R. Scharlau,*On the Pythagoras number of orders in totally real number fields*, J. Reine Angew. Math.**316**(1980) 208-210. MR**81g:10036****[S]**W. Scharlau,*Quadratic and Hermitian Forms*, Grundlehren**270**, Berlin, Heidelberg, New York, Tokyo: Springer 1985. MR**86k:11022**

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (1991):
11E04,
11E10,
11E25,
12D15

Retrieve articles in all journals with MSC (1991): 11E04, 11E10, 11E25, 12D15

Additional Information

**Detlev W. Hoffmann**

Affiliation:
Equipe de Mathématiques de Besançon, UMR 6623 du CNRS, Université de Franche-Comté, 16, Route de Gray, F-25030 Besançon Cedex, France

Email:
detlev@math.univ-fcomte.fr

DOI:
https://doi.org/10.1090/S0894-0347-99-00301-X

Keywords:
Quadratic forms,
sums of squares,
formally real fields,
Pythagoras number,
$u$-invariant,
Hasse number

Received by editor(s):
July 31, 1998

Received by editor(s) in revised form:
February 12, 1999

Published electronically:
April 13, 1999

Article copyright:
© Copyright 1999
American Mathematical Society