Foliations with good geometry
Author:
Sérgio R. Fenley
Journal:
J. Amer. Math. Soc. 12 (1999), 619676
MSC (1991):
Primary 53C12, 53C23, 57R30, 58F15, 58F18; Secondary 53C22, 57M99, 58F25
Published electronically:
April 26, 1999
MathSciNet review:
1674739
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The goal of this article is to show that there is a large class of closed hyperbolic 3manifolds admitting codimension one foliations with good large scale geometric properties. We obtain results in two directions. First there is an internal result: A possibly singular foliation in a manifold is quasiisometric if, when lifted to the universal cover, distance along leaves is efficient up to a bounded multiplicative distortion in measuring distance in the universal cover. This means that leaves reflect very well the geometry in the large of the universal cover and are geometrically tightthis is the best geometric behavior. We previously proved that nonsingular codimension one foliations in closed hyperbolic 3manifolds can never be quasiisometric. In this article we produce a large class of singular quasiisometric, codimension one foliations in closed hyperbolic 3manifolds. The foliations are stable and unstable foliations of pseudoAnosov flows. Our second result is an external result, relating (nonsingular) foliations in hyperbolic 3manifolds with their limit sets in the universal cover, that is, showing that leaves in the universal cover have good asymptotic behavior. Let be a Reebless, finite depth foliation in a closed hyperbolic 3manifold. Then is not quasiisometric, but suppose that is transverse to a quasigeodesic pseudoAnosov flow with quasiisometric stable and unstable foliationswhich are given by the internal result. We then show that the lifts of leaves of to the universal cover extend continuously to the sphere at infinity and we also produce infinitely many examples satisfying the hypothesis. The main tools used to prove these results are first a link between geometric properties of stable/unstable foliations of pseudoAnosov flows and the topology of these foliations in the universal cover, and second a topological theory of the joint structure of the pseudoAnosov foliation in the universal cover.
 [An]
D.
V. Anosov, Geodesic flows on closed Riemann manifolds with negative
curvature., Proceedings of the Steklov Institute of Mathematics, No.
90 (1967). Translated from the Russian by S. Feder, American Mathematical
Society, Providence, R.I., 1969. MR 0242194
(39 #3527)
 [AnSi]
D.
V. Anosov and Ja.
G. Sinaĭ, Certain smooth ergodic systems, Uspehi Mat.
Nauk 22 (1967), no. 5 (137), 107–172 (Russian).
MR
0224771 (37 #370)
 [As]
Daniel
Asimov, Round handles and nonsingular MorseSmale flows, Ann.
of Math. (2) 102 (1975), no. 1, 41–54. MR 0380883
(52 #1780)
 [Ba]
Thierry
Barbot, Flots d’Anosov sur les variétés
graphées au sens de Waldhausen, Ann. Inst. Fourier (Grenoble)
46 (1996), no. 5, 1451–1517 (French, with
English and French summaries). MR 1427133
(97j:57031)
 [BeMe]
Mladen
Bestvina and Geoffrey
Mess, The boundary of negatively curved
groups, J. Amer. Math. Soc.
4 (1991), no. 3,
469–481. MR 1096169
(93j:20076), http://dx.doi.org/10.1090/S08940347199110961691
 [BlCa]
Andrew
J. Casson and Steven
A. Bleiler, Automorphisms of surfaces after Nielsen and
Thurston, London Mathematical Society Student Texts, vol. 9,
Cambridge University Press, Cambridge, 1988. MR 964685
(89k:57025)
 [Bo]
Francis
Bonahon, Bouts des variétés hyperboliques de
dimension 3, Ann. of Math. (2) 124 (1986),
no. 1, 71–158 (French). MR 847953
(88c:57013), http://dx.doi.org/10.2307/1971388
 [Br]
Mark
Brittenham, Essential laminations in Seifertfibered spaces,
Topology 32 (1993), no. 1, 61–85. MR 1204407
(94c:57027), http://dx.doi.org/10.1016/00409383(93)90038W
 [BNR]
Mark
Brittenham, Ramin
Naimi, and Rachel
Roberts, Graph manifolds and taut foliations, J. Differential
Geom. 45 (1997), no. 3, 446–470. MR 1472884
(98j:57040)
 [Can]
Alberto
Candel, Uniformization of surface laminations, Ann. Sci.
École Norm. Sup. (4) 26 (1993), no. 4,
489–516. MR 1235439
(94f:57025)
 [CaTh]
J. Cannon and W. Thurston, Group invariant Peano curves, to appear.
 [CaCo]
J.
Cantwell and L.
Conlon, Smoothability of proper foliations, Ann. Inst. Fourier
(Grenoble) 38 (1988), no. 3, 219–244. MR 976690
(90f:57034)
 [CLR1]
D.
Cooper, D.
D. Long, and A.
W. Reid, Bundles and finite foliations, Invent. Math.
118 (1994), no. 2, 255–283. MR 1292113
(96h:57013), http://dx.doi.org/10.1007/BF01231534
 [CLR2]
D.
Cooper, D.
D. Long, and A.
W. Reid, Finite foliations and similarity interval exchange
maps, Topology 36 (1997), no. 1, 209–227.
MR
1410472 (97j:57032), http://dx.doi.org/10.1016/00409383(95)000666
 [CDP]
M. Coornaert, T. Delzant and A. Papadopoulos, Géométrie et théorie des groupes, Les groupes hyperboliques de Gromov, Lecture Notes in Math., 1441 Springer Verlag (1991).
 [Fe1]
Sérgio
R. Fenley, Asymptotic properties of depth one foliations in
hyperbolic 3manifolds, J. Differential Geom. 36
(1992), no. 2, 269–313. MR 1180384
(93k:57030)
 [Fe2]
Sérgio
R. Fenley, Quasiisometric foliations, Topology
31 (1992), no. 3, 667–676. MR 1174265
(94a:57044), http://dx.doi.org/10.1016/00409383(92)90057O
 [Fe3]
Sérgio
R. Fenley, Anosov flows in 3manifolds, Ann. of Math. (2)
139 (1994), no. 1, 79–115. MR 1259365
(94m:58162), http://dx.doi.org/10.2307/2946628
 [Fe4]
Sérgio
R. Fenley, Quasigeodesic Anosov flows and homotopic properties of
flow lines, J. Differential Geom. 41 (1995),
no. 2, 479–514. MR 1331975
(96f:58118)
 [Fe5]
Sérgio
R. Fenley, One sided branching in Anosov foliations, Comment.
Math. Helv. 70 (1995), no. 2, 248–266. MR 1324629
(96c:57052), http://dx.doi.org/10.1007/BF02566007
 [Fe6]
Sérgio
R. Fenley, The structure of branching in Anosov flows of
3manifolds, Comment. Math. Helv. 73 (1998),
no. 2, 259–297. MR 1611703
(99a:58123), http://dx.doi.org/10.1007/s000140050055
 [Fe7]
S. Fenley, Surfaces transverse to pseudoAnosov flows and virtual fibers in manifolds, to appear in Topology (1999).
 [FeMo]
S. Fenley and L. Mosher, Quasigeodesic flows in hyperbolic manifolds, to appear in Topology.
 [FrWi]
John
Franks and Bob
Williams, Anomalous Anosov flows, Global theory of dynamical
systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979),
Lecture Notes in Math., vol. 819, Springer, Berlin, 1980,
pp. 158–174. MR 591182
(82e:58078)
 [Ga1]
David
Gabai, Foliations and the topology of 3manifolds, J.
Differential Geom. 18 (1983), no. 3, 445–503.
MR 723813
(86a:57009)
 [Ga2]
David
Gabai, Foliations and the topology of 3manifolds. II, J.
Differential Geom. 26 (1987), no. 3, 461–478.
MR 910017
(89a:57014a)
 [Ga3]
David
Gabai, Foliations and the topology of 3manifolds. III, J.
Differential Geom. 26 (1987), no. 3, 479–536.
MR 910018
(89a:57014b)
 [GaOe]
David
Gabai and Ulrich
Oertel, Essential laminations in 3manifolds, Ann. of Math.
(2) 130 (1989), no. 1, 41–73. MR 1005607
(90h:57012), http://dx.doi.org/10.2307/1971476
 [GhHa]
É.
Ghys and P.
de la Harpe (eds.), Sur les groupes hyperboliques
d’après Mikhael Gromov, Progress in Mathematics,
vol. 83, Birkhäuser Boston Inc., Boston, MA, 1990 (French).
Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988. MR 1086648
(92f:53050)
 [Gr]
M.
Gromov, Hyperbolic groups, Essays in group theory, Math. Sci.
Res. Inst. Publ., vol. 8, Springer, New York, 1987,
pp. 75–263. MR 919829
(89e:20070), http://dx.doi.org/10.1007/9781461395867_3
 [He]
John
Hempel, 3Manifolds, Princeton University Press, Princeton, N.
J., 1976. Ann. of Math. Studies, No. 86. MR 0415619
(54 #3702)
 [JaSh]
William
H. Jaco and Peter
B. Shalen, Seifert fibered spaces in 3manifolds, Mem. Amer.
Math. Soc. 21 (1979), no. 220, viii+192. MR 539411
(81c:57010), http://dx.doi.org/10.1090/memo/0220
 [Le]
Gilbert
Levitt, Foliations and laminations on hyperbolic surfaces,
Topology 22 (1983), no. 2, 119–135. MR 683752
(84h:57015), http://dx.doi.org/10.1016/00409383(83)90023X
 [Ma]
Albert
Marden, The geometry of finitely generated kleinian groups,
Ann. of Math. (2) 99 (1974), 383–462. MR 0349992
(50 #2485)
 [Mor]
J. Morgan, On Thurston's uniformization theorem for dimensional manifolds, in The Smith Conjecture, J. Morgan and H. Bass, eds., Academic Press, New York, 1984, 37125. CMP 17:01
 [Mo1]
Lee
Mosher, Dynamical systems and the homology norm of a 3manifold. I.
Efficient intersection of surfaces and flows, Duke Math. J.
65 (1992), no. 3, 449–500. MR 1154179
(93g:57018a), http://dx.doi.org/10.1215/S0012709492065185
 [Mo2]
Lee
Mosher, Dynamical systems and the homology norm of a 3manifold.
II, Invent. Math. 107 (1992), no. 2,
243–281. MR 1144424
(93g:57018b), http://dx.doi.org/10.1007/BF01231890
 [Mo3]
Lee
Mosher, Examples of quasigeodesic flows on hyperbolic
3manifolds, Topology ’90 (Columbus, OH, 1990) Ohio State
Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter, Berlin, 1992,
pp. 227–241. MR 1184414
(93i:58120)
 [Mo4]
L. Mosher, Laminations and flows transverse to finite depth foliations, manuscript available from http://newark.rutgers.edu:80/ mosher/, Part I: Branched surfaces and dynamics, Part II in preparation.
 [No]
S.
P. Novikov, The topology of foliations, Trudy Moskov. Mat.
Obšč. 14 (1965), 248–278 (Russian). MR 0200938
(34 #824)
 [Pa]
Carlos
Frederico Borges Palmeira, Open manifolds foliated by planes,
Ann. Math. (2) 107 (1978), no. 1, 109–131. MR 0501018
(58 #18490)
 [Pl]
J.
F. Plante, Foliations with measure preserving holonomy, Ann.
of Math. (2) 102 (1975), no. 2, 327–361. MR 0391125
(52 #11947)
 [Ro]
Harold
Rosenberg, Foliations by planes, Topology 7
(1968), 131–138. MR 0228011
(37 #3595)
 [St]
Kurt
Strebel, Quadratic differentials, Ergebnisse der Mathematik
und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)],
vol. 5, SpringerVerlag, Berlin, 1984. MR 743423
(86a:30072)
 [Sc]
Peter
Scott, The geometries of 3manifolds, Bull. London Math. Soc.
15 (1983), no. 5, 401–487. MR 705527
(84m:57009), http://dx.doi.org/10.1112/blms/15.5.401
 [Su]
Dennis
Sullivan, Cycles for the dynamical study of foliated manifolds and
complex manifolds, Invent. Math. 36 (1976),
225–255. MR 0433464
(55 #6440)
 [Th1]
W. Thurston, Foliations of manifolds which are Circle Bundles, Thesis, University of California, Berkeley, 1972.
 [Th2]
W. Thurston, The geometry and topology of 3manifolds, Princeton University Lecture Notes, 1982.
 [Th3]
W. Thurston, Hyperbolic structures on manifolds II: Surface groups and manifolds that fiber over the circle, preprint.
 [Th4]
William
P. Thurston, Threedimensional manifolds, Kleinian
groups and hyperbolic geometry, Bull. Amer.
Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. MR 648524
(83h:57019), http://dx.doi.org/10.1090/S027309791982150030
 [Ze]
A.
Zeghib, Sur les feuilletages géodésiques continus des
variétés hyperboliques, Invent. Math.
114 (1993), no. 1, 193–206 (French, with
English and French summaries). MR 1235023
(94i:58158), http://dx.doi.org/10.1007/BF01232666
 [An]
 D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Steklov Inst. Math. 90 (1969). MR 39:3527
 [AnSi]
 D. V. Anosov and Y. Sinai, Some smoothly ergodic systems, Russian Math. Surveys 22 (1967) 5 103167. MR 37:370
 [As]
 D. Asimov, Round handles and nonsingular MorseSmale flows, Ann. of Math. 102 (1979) 4154. MR 52:1780
 [Ba]
 T. Barbot, Flots d'Anosov sur les variétés graphées au sens de Waldhausen", Ann. Inst. Fourier Grenoble 46 (1996) 14511517. MR 97j:57031
 [BeMe]
 M. Bestvina and G. Mess, The boundary of negatively curved groups, Jour. Amer. Math. Soc., 4 (1991) 469481. MR 93j:20076
 [BlCa]
 S. Bleiler and A. Casson, Automorphisms of surfaces after Nielsen and Thurston, Cambridge Univ. Press, 1988. MR 89k:57025
 [Bo]
 F. Bonahon, Bouts des variétés hyperboliques de dimension , Ann. of Math. 124 (1986) 71158. MR 88c:57013
 [Br]
 M. Brittenham, Essential laminations in Seifert fibered spaces, Topology 32 (1993) 6185. MR 94c:57027
 [BNR]
 M. Brittenham, R. Naimi, R. Roberts, Graph manifolds and taut foliations, Jour. Diff. Geom. 45 (1997) 446470. MR 98j:57040
 [Can]
 A. Candel, Uniformization of surface laminations, Ann. Sci. Ecole Norm. Sup. (4) 26 (1993) 489516. MR 94f:57025
 [CaTh]
 J. Cannon and W. Thurston, Group invariant Peano curves, to appear.
 [CaCo]
 J. Cantwell and L. Conlon, Smoothability of proper foliations, Ann. Inst. Fourier, Grenoble, 38 (1988) 403453. MR 90f:57034
 [CLR1]
 D. Cooper, D. Long and A. Reid, Bundles and finite foliations, Inven. Math. 118 (1994) 255283. MR 96h:57013
 [CLR2]
 D. Cooper, D. Long and A. Reid, Finite foliations and similarity interval exchange maps, Topology, 36 (1997) 209227. MR 97j:57032
 [CDP]
 M. Coornaert, T. Delzant and A. Papadopoulos, Géométrie et théorie des groupes, Les groupes hyperboliques de Gromov, Lecture Notes in Math., 1441 Springer Verlag (1991).
 [Fe1]
 S. Fenley, Asymptotic properties of depth one foliations in hyperbolic manifolds, Jour. Diff. Geom., 36 (1992) 269313. MR 93k:57030
 [Fe2]
 S. Fenley, Quasiisometric foliations, Topology 31 (1992) 667676. MR 94a:57044
 [Fe3]
 S. Fenley, Anosov flows in manifolds, Ann. of Math. 139 (1994) 79115. MR 94m:58162
 [Fe4]
 S. Fenley, Quasigeodesic Anosov flows and homotopic properties of closed orbits, Jour. Diff. Geo. 41 (1995) 479514. MR 96f:58118
 [Fe5]
 S. Fenley, One sided branching in Anosov foliations, Comm. Math. Helv. 70 (1995) 248266. MR 96c:57052
 [Fe6]
 S. Fenley, The structure of branching in Anosov flows of manifolds, Comm. Math. Helv. 73 (1998) 259297. MR 99a:58123
 [Fe7]
 S. Fenley, Surfaces transverse to pseudoAnosov flows and virtual fibers in manifolds, to appear in Topology (1999).
 [FeMo]
 S. Fenley and L. Mosher, Quasigeodesic flows in hyperbolic manifolds, to appear in Topology.
 [FrWi]
 J. Franks and R. Williams, Anomalous Anosov flows, in Global theory of Dyn. Systems, Lecture Notes in Math. 819 Springer (1980). MR 82e:58078
 [Ga1]
 D. Gabai, Foliations and the topology of 3manifolds, J. Diff. Geo. 18 (1983) 445503. MR 86a:57009
 [Ga2]
 D. Gabai, Foliations and the topology of 3manifolds II, J. Diff. Geo. 26 (1987) 461478. MR 89a:57014a
 [Ga3]
 D. Gabai, Foliations and the topology of 3manifolds III, J. Diff. Geo. 26 (1987) 479536. MR 89a:57014b
 [GaOe]
 D. Gabai and U. Oertel, Essential laminations and manifolds, Ann. of Math. 130 (1989) 4173. MR 90h:57012
 [GhHa]
 E. Ghys and P. de la Harpe, eds., Sur les groupes hyperboliques d'aprés Mikhael Gromov, Progress in Math., 83 Birkhäuser, 1991. MR 92f:53050
 [Gr]
 M. Gromov, Hyperbolic groups, in Essays on group theory, 75263, Springer, 1987. MR 89e:20070
 [He]
 J. Hempel, 3manifolds, Ann. of Math. Studies 86, Princeton University Press, 1976. MR 54:3702
 [JaSh]
 W. Jaco and P. Shalen, Seifert fibered spaces in manifolds, Memoirs of the A. M. S. 21, number 220, 1979. MR 81c:57010
 [Le]
 G. Levitt, Foliations and laminations on hypebolic surfaces, Topology 22 (1983) 119135. MR 84h:57015
 [Ma]
 A. Marden, The geometry of finitely generated Kleinian groups, Ann. of Math. 99 (1974) 383462. MR 50:2485
 [Mor]
 J. Morgan, On Thurston's uniformization theorem for dimensional manifolds, in The Smith Conjecture, J. Morgan and H. Bass, eds., Academic Press, New York, 1984, 37125. CMP 17:01
 [Mo1]
 L. Mosher, Dynamical systems and the homology norm of a manifold I. Efficient interesection of surfaces and flows, Duke Math. Jour. 65 (1992) 449500. MR 93g:57018a
 [Mo2]
 L. Mosher, Dynamical systems and the homology norm of a manifold II, Invent. Math. 107 (1992) 243281. MR 93g:57018b
 [Mo3]
 L. Mosher, Examples of quasigeodesic flows on hyperbolic manifolds, in Proceedings of the Ohio State University Research Semester on LowDimensional topology, W. de Gruyter, 1992. MR 93i:58120
 [Mo4]
 L. Mosher, Laminations and flows transverse to finite depth foliations, manuscript available from http://newark.rutgers.edu:80/ mosher/, Part I: Branched surfaces and dynamics, Part II in preparation.
 [No]
 S. P. Novikov, Topology of foliations, Trans. Moscow Math. Soc. 14 (1963) 268305. MR 34:824
 [Pa]
 C. Palmeira, Open manifolds foliated by planes, Ann. of Math., 107 (1978) 109131. MR 58:18490
 [Pl]
 J. Plante, Foliations with measure preserving holonomy, Ann. of Math. 107 (1975) 327361. MR 52:11947
 [Ro]
 H. Rosenberg, Foliations by planes, Topology 7 (1968) 131138. MR 37:3595
 [St]
 K. Strebel, Quadratic differentials, Springer Verlag, 1984. MR 86a:30072
 [Sc]
 P. Scott, The geometries of manifolds, Bull. London Math. Soc. 15 (1983) 401487. MR 84m:57009
 [Su]
 D. Sullivan, Cycles for the dynamical study of foliated manifolds and complex manifolds, Inven. Math. 36 (1976) 225255. MR 55:6440
 [Th1]
 W. Thurston, Foliations of manifolds which are Circle Bundles, Thesis, University of California, Berkeley, 1972.
 [Th2]
 W. Thurston, The geometry and topology of 3manifolds, Princeton University Lecture Notes, 1982.
 [Th3]
 W. Thurston, Hyperbolic structures on manifolds II: Surface groups and manifolds that fiber over the circle, preprint.
 [Th4]
 W. Thurston, 3dimensional manifolds, Kleinian Groups and hyperbolic geometry, Bull. A.M.S., 6 (new series), (1982) 357381. MR 83h:57019
 [Ze]
 A. Zeghib, Sur les feuilletages géodésiques continus des variétés hyperboliques, Inven. Math. 114 (1993) 193206. MR 94i:58158
Similar Articles
Retrieve articles in Journal of the American Mathematical Society
with MSC (1991):
53C12,
53C23,
57R30,
58F15,
58F18,
53C22,
57M99,
58F25
Retrieve articles in all journals
with MSC (1991):
53C12,
53C23,
57R30,
58F15,
58F18,
53C22,
57M99,
58F25
Additional Information
Sérgio R. Fenley
Affiliation:
Department of Mathematics, Princeton University, Princeton, New Jersey 085441000
Address at time of publication:
Department of Mathematics, Washington University, St. Louis, Missouri 631304899
Email:
fenley@math.princeton.edu, fenley@math.wustl.edu
DOI:
http://dx.doi.org/10.1090/S0894034799003045
PII:
S 08940347(99)003045
Keywords:
Foliations,
flows,
hyperbolic 3manifolds,
geometric structures,
asymptotic geometry,
quasiisometries
Received by editor(s):
October 20, 1997
Received by editor(s) in revised form:
March 5, 1998
Published electronically:
April 26, 1999
Additional Notes:
This research was partially supported by an NSF postdoctoral fellowship.
Article copyright:
© Copyright 1999 American Mathematical Society
