Multidimensional van der Corput

and sublevel set estimates

Authors:
Anthony Carbery, Michael Christ and James Wright

Journal:
J. Amer. Math. Soc. **12** (1999), 981-1015

MSC (1991):
Primary 42B10; Secondary 26D10, 05D99

Published electronically:
June 7, 1999

MathSciNet review:
1683156

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Van der Corput's lemma gives an upper bound for one-dimensional oscillatory integrals that depends only on a lower bound for some derivative of the phase, not on any upper bound of any sort. We establish generalizations to higher dimensions, in which the only hypothesis is that a partial derivative of the phase is assumed bounded below by a positive constant. Analogous upper bounds for measures of sublevel sets are also obtained. The analysis, particularly for the sublevel set estimates, has a more combinatorial flavour than in the one-dimensional case.

**[AKC]**G. I. Arhipov, A. A. Karacuba, and V. N. Čubarikov,*Trigonometric integrals*, Izv. Akad. Nauk SSSR Ser. Mat.**43**(1979), no. 5, 971–1003, 1197 (Russian). MR**552548****[CP]**A. Carbery and S. Pérez Gómez, in preparation.**[CRW]**A. Carbery, F. Ricci and J. Wright, Maximal functions and Hilbert transforms associated to polynomials, Rev. Mat. Iberoamericana 14 (1998), 117-144.**[CSWW]**A. Carbery, A. Seeger, S. Wainger and J. Wright, Classes of singular integral operators along variable lines, to appear, J. Geom. Anal.**[CWW]**Anthony Carbery, Stephen Wainger, and James Wright,*Hilbert transforms and maximal functions associated to flat curves on the Heisenberg group*, J. Amer. Math. Soc.**8**(1995), no. 1, 141–179. MR**1273412**, 10.1090/S0894-0347-1995-1273412-0**[C1]**Michael Christ,*Failure of an endpoint estimate for integrals along curves*, Fourier analysis and partial differential equations (Miraflores de la Sierra, 1992) Stud. Adv. Math., CRC, Boca Raton, FL, 1995, pp. 163–168. MR**1330238****[C2]**Michael Christ,*Hilbert transforms along curves. I. Nilpotent groups*, Ann. of Math. (2)**122**(1985), no. 3, 575–596. MR**819558**, 10.2307/1971330**[E]**P. Erdős,*On extremal problems of graphs and generalized graphs*, Israel J. Math.**2**(1964), 183–190. MR**0183654****[F]**K. J. Falconer,*The geometry of fractal sets*, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR**867284****[H]**Lars Hörmander,*Oscillatory integrals and multipliers on 𝐹𝐿^{𝑝}*, Ark. Mat.**11**(1973), 1–11. MR**0340924****[IK]**Eugene Isaacson and Herbert Bishop Keller,*Analysis of numerical methods*, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR**0201039****[JS]**W. B. Jurkat and G. Sampson,*The complete solution to the (𝐿^{𝑝},𝐿^{𝑞}) mapping problem for a class of oscillating kernels*, Indiana Univ. Math. J.**30**(1981), no. 3, 403–413. MR**611228**, 10.1512/iumj.1981.30.30031**[K]**N. Katz, Self crossing six sided figure problem, preprint.**[Kch]**U. Keich, On bounds for Kakeya maximal functions and the Minkowski dimension in , Bull. London Math. Soc. 31 (1999), no. 2, 213-221. CMP**99:06****[Ke]**T. Keleti, Density and covering properties of intervals of , preprint.**[P]**Yibiao Pan,*Uniform estimates for oscillatory integral operators*, J. Funct. Anal.**100**(1991), no. 1, 207–220. MR**1124299**, 10.1016/0022-1236(91)90108-H**[PS1]**D. H. Phong and E. M. Stein,*On a stopping process for oscillatory integrals*, J. Geom. Anal.**4**(1994), no. 1, 105–120. MR**1274140**, 10.1007/BF02921595**[PS2]**D. H. Phong and E. M. Stein,*The Newton polyhedron and oscillatory integral operators*, Acta Math.**179**(1997), no. 1, 105–152. MR**1484770**, 10.1007/BF02392721**[RS]**Fulvio Ricci and E. M. Stein,*Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals*, J. Funct. Anal.**73**(1987), no. 1, 179–194. MR**890662**, 10.1016/0022-1236(87)90064-4**[R]**Walter Rudin,*Real and complex analysis*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0210528****[Se1]**Andreas Seeger,*𝐿²-estimates for a class of singular oscillatory integrals*, Math. Res. Lett.**1**(1994), no. 1, 65–73. MR**1258491**, 10.4310/MRL.1994.v1.n1.a8**[Se2]**Andreas Seeger,*Radon transforms and finite type conditions*, J. Amer. Math. Soc.**11**(1998), no. 4, 869–897. MR**1623430**, 10.1090/S0894-0347-98-00280-X**[Sj]**Per Sjölin,*Convolution with oscillating kernels*, Indiana Univ. Math. J.**30**(1981), no. 1, 47–55. MR**600031**, 10.1512/iumj.1981.30.30004**[S]**Elias M. Stein,*Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR**1232192**

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (1991):
42B10,
26D10,
05D99

Retrieve articles in all journals with MSC (1991): 42B10, 26D10, 05D99

Additional Information

**Anthony Carbery**

Affiliation:
Department of Mathematics & Statistics, University of Edinburgh, King’s Buildings, Edinburgh EH9 3JZ, Scotland, United Kingdom

Email:
carbery@maths.ed.ac.uk

**Michael Christ**

Affiliation:
Department of Mathematics, University of California, Berkeley, California 94720-3840

Email:
mchrist@math.berkeley.edu

**James Wright**

Affiliation:
Department of Mathematics, University of New South Wales, 2052 Sydney, New South Wales, Australia

Email:
jimw@maths.unsw.edu.au

DOI:
https://doi.org/10.1090/S0894-0347-99-00309-4

Keywords:
Oscillatory integrals,
sublevel sets,
van der Corput lemma,
combinatorics

Received by editor(s):
June 24, 1998

Published electronically:
June 7, 1999

Additional Notes:
This work was partially supported by EPSRC grants GR/L10024 and GR/L78574 (Carbery), NSF grant DMS 9623007 (Christ), ARC grants (Wright), and MSRI

Article copyright:
© Copyright 1999
American Mathematical Society