The Bellman functions and twoweight inequalities for Haar multipliers
Authors:
F. Nazarov, S. Treil and A. Volberg
Journal:
J. Amer. Math. Soc. 12 (1999), 909928
MSC (1991):
Primary 42B20, 42A50, 47B35
Published electronically:
June 24, 1999
MathSciNet review:
1685781
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We give necessary and sufficient conditions for twoweight norm inequalities for Haar multiplier operators and for square functions. The conditions are of the type used by Eric Sawyer in characterizing the boundedness of the wide class of operators with positive kernel. The difference is that our operator is essentially singular. We also show how to separate two Sawyer's conditions (even for positive kernel operators) by finding which condition is responsible for which estimate.
 [B]
Stephen
M. Buckley, Summation conditions on weights, Michigan Math. J.
40 (1993), no. 1, 153–170. MR 1214060
(94d:42021), http://dx.doi.org/10.1307/mmj/1029004679
 [Bu]
Donald
L. Burkholder, Explorations in martingale theory and its
applications, École d’Été de
Probabilités de SaintFlour XIX—1989, Lecture Notes in Math.,
vol. 1464, Springer, Berlin, 1991, pp. 1–66. MR 1108183
(92m:60037), http://dx.doi.org/10.1007/BFb0085167
 [CF]
R.
R. Coifman and C.
Fefferman, Weighted norm inequalities for maximal functions and
singular integrals, Studia Math. 51 (1974),
241–250. MR 0358205
(50 #10670)
 [CJS]
R.
R. Coifman, Peter
W. Jones, and Stephen
Semmes, Two elementary proofs of the
𝐿² boundedness of Cauchy integrals on Lipschitz
curves, J. Amer. Math. Soc.
2 (1989), no. 3,
553–564. MR
986825 (90k:42017), http://dx.doi.org/10.1090/S08940347198909868256
 [CS1]
Mischa
Cotlar and Cora
Sadosky, On the HelsonSzegő theorem and a related class of
modified Toeplitz kernels, Harmonic analysis in Euclidean spaces
(Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978)
Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I.,
1979, pp. 383–407. MR 545279
(81j:42022)
 [CS2]
M.
Cotlar and C.
Sadosky, On some 𝐿^{𝑝} versions of the
HelsonSzegő theorem, Conference on harmonic analysis in honor
of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser.,
Wadsworth, Belmont, CA, 1983, pp. 306–317. MR 730075
(85i:42015)
 [ChWW]
S.Y.
A. Chang, J.
M. Wilson, and T.
H. Wolff, Some weighted norm inequalities concerning the
Schrödinger operators, Comment. Math. Helv. 60
(1985), no. 2, 217–246. MR 800004
(87d:42027), http://dx.doi.org/10.1007/BF02567411
 [F]
Charles
L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.) 9
(1983), no. 2, 129–206. MR 707957
(85f:35001), http://dx.doi.org/10.1090/S027309791983151546
 [FKP]
R.
A. Fefferman, C.
E. Kenig, and J.
Pipher, The theory of weights and the Dirichlet problem for
elliptic equations, Ann. of Math. (2) 134 (1991),
no. 1, 65–124. MR 1114608
(93h:31010), http://dx.doi.org/10.2307/2944333
 [G]
John
B. Garnett, Bounded analytic functions, Pure and Applied
Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich,
Publishers], New YorkLondon, 1981. MR 628971
(83g:30037)
 [KV]
N.J. Kalton, J.E. Verbitsky, Nonlinear equations and weighted norm inequalities, Trans. Amer. Math. Soc., to appear. CMP 98:02
 [N]
F. Nazarov, A counterexample to a problem of Sarason on boundedness of the product of two Toeplitz operators. Preprint, 1996, 15.
 [NT]
F.
L. Nazarov and S.
R. Treĭl′, The hunt for a Bellman function:
applications to estimates for singular integral operators and to other
classical problems of harmonic analysis, Algebra i Analiz
8 (1996), no. 5, 32–162 (Russian, with Russian
summary); English transl., St. Petersburg Math. J. 8
(1997), no. 5, 721–824. MR 1428988
(99d:42026)
 [NT1]
F.Nazarov, S.Treil, The weighted norm inequalities for Hilbert transform are now trivial, C.R. Acad. Sci. Paris, Série J, 323, (1996), 717722. CMP 97:03
 [NTV]
F.
Nazarov, S.
Treil, and A.
Volberg, Cauchy integral and CalderónZygmund operators on
nonhomogeneous spaces, Internat. Math. Res. Notices
15 (1997), 703–726. MR 1470373
(99e:42028), http://dx.doi.org/10.1155/S1073792897000469
 [NTV1]
F.Nazarov, S.Treil, A.Volberg, The Bellman functions and two weight inequalities for Haar multipliers, MSRI Preprint 1997103, p. 131.
 [Ne]
C.
J. Neugebauer, Inserting
𝐴_{𝑝}weights, Proc. Amer.
Math. Soc. 87 (1983), no. 4, 644–648. MR 687633
(84d:42026), http://dx.doi.org/10.1090/S00029939198306876332
 [S]
Cora
Sadosky, Liftings of kernels shiftinvariant in scattering
systems, Holomorphic spaces (Berkeley, CA, 1995) Math. Sci. Res.
Inst. Publ., vol. 33, Cambridge Univ. Press, Cambridge, 1998,
pp. 303–336. MR 1630653
(99e:47034)
 [Sa]
Eric
T. Sawyer, Norm inequalities relating singular integrals and the
maximal function, Studia Math. 75 (1983), no. 3,
253–263. MR
722250 (85c:42018)
 [S1]
Eric
T. Sawyer, A characterization of a twoweight norm inequality for
maximal operators, Studia Math. 75 (1982),
no. 1, 1–11. MR 676801
(84i:42032)
 [S2]
Eric
T. Sawyer, A characterization of two weight norm
inequalities for fractional and Poisson integrals, Trans. Amer. Math. Soc. 308 (1988), no. 2, 533–545. MR 930072
(89d:26009), http://dx.doi.org/10.1090/S00029947198809300726
 [St]
Elias
M. Stein, Harmonic analysis: realvariable methods, orthogonality,
and oscillatory integrals, Princeton Mathematical Series,
vol. 43, Princeton University Press, Princeton, NJ, 1993. With the
assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
(95c:42002)
 [SW]
E.
Sawyer and R.
L. Wheeden, Weighted inequalities for fractional integrals on
Euclidean and homogeneous spaces, Amer. J. Math. 114
(1992), no. 4, 813–874. MR 1175693
(94i:42024), http://dx.doi.org/10.2307/2374799
 [T]
X. Tolsa, Boundedness of the Cauchy integral operator. Preprint, 1997.
 [TV1]
S. Treil and A. Volberg, Wavelets and the angle between past and future, J. Funct. Anal. 143 (1997), no. 2, 269308. CMP 97:06
 [TV2]
S.
R. Treil and A.
L. Volberg, Weighted embeddings and weighted norm inequalities for
the Hilbert transform and the maximal operator, Algebra i Analiz
7 (1995), no. 6, 205–226; English transl., St.
Petersburg Math. J. 7 (1996), no. 6, 1017–1032.
MR
1381983 (97c:42017)
 [TVZ]
S.R. Treil, A.L. Volberg, D. Zheng, Hilbert transform, Toeplitz operators and Hankel operators, and invariant weights. Revista Mat. Iberoamericana, 13 (1997), No. 2, 319360. CMP 98:11
 [VW]
J.E. Verbitsky, R.L. Wheeden, Weighted norm inequalities for integral operators. Preprint, 1996. 125.
 [V]
A.
Volberg, Matrix 𝐴_{𝑝} weights
via 𝑆functions, J. Amer. Math.
Soc. 10 (1997), no. 2, 445–466. MR 1423034
(98a:42013), http://dx.doi.org/10.1090/S0894034797002336
 [Zh]
Dechao
Zheng, The distribution function inequality and products of
Toeplitz operators and Hankel operators, J. Funct. Anal.
138 (1996), no. 2, 477–501. MR 1395967
(97e:47040), http://dx.doi.org/10.1006/jfan.1996.0073
 [B]
 St. Buckley, Summation conditions on weights, Mich. Math. J., 40 (1993), 153170. MR 94d:42021
 [Bu]
 D.L Burkholder, Explorations in martingale theory and its applications. Ecole d'Eté de Probabilité de SaintFlour XIX1989, 166, Lecture Notes in Mathematics, 1464, Springer, Berlin, 1991. MR 92m:60037
 [CF]
 R.R. Coifman, Ch. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51 (1974), 241250. MR 50:10670
 [CJS]
 R.R. Coifman, P.W. Jones, and St. Semmes, Two elementary proofs of the boundedness of Cauchy integrals on Lipschitz curves, J. of Amer. Math. Soc., 2 (1989), No. 3, 553564. MR 90k:42017
 [CS1]
 M. Cotlar, C. Sadosky, On the HelsonSzegö theorem and a related class of modified Toeplitz kernels, in Harmonic Analysis in Euclidean spaces, ed. by G.Weiss and S. Wainger, Proc. Symp. Pure Math. 35, Amer. Math. Soc., Providence, R.I., 1979, 383407. MR 81j:42022
 [CS2]
 M. Cotlar, C. Sadosky, On some version of the HelsonSzegö theorem, Conference on Harmonic Analysis in honor of Antony Zygmund (Chicago, 1981), vol.1, ed. by W. Beckner et al., Wadsworth Math. Ser,. Wadsworth, Belmont, CA, 1983, 306317. MR 85i:42015
 [ChWW]
 A. Chang, J.M. Wilson, Th. Wolff, Some weighted norm inequalities concerning the Schrödinger operators. Comment. Math. Helvetici, 60 (1985), 217246. MR 87d:42027
 [F]
 C. Fefferman, The uncertainty principle. Bull. of Amer. Math. Soc., 9 (1983), No. 2, 127206. MR 85f:35001
 [FKP]
 R.A. Fefferman, C.E. Kenig, J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, Ann. of Math. 134 (1991), 65124. MR 93h:31010
 [G]
 John B. Garnett, Bounded analytic functions. Pure and Applied Mathematics, 96. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New YorkLondon, 1981. xvi+467 MR 83g:30037
 [KV]
 N.J. Kalton, J.E. Verbitsky, Nonlinear equations and weighted norm inequalities, Trans. Amer. Math. Soc., to appear. CMP 98:02
 [N]
 F. Nazarov, A counterexample to a problem of Sarason on boundedness of the product of two Toeplitz operators. Preprint, 1996, 15.
 [NT]
 F. L. Nazarov and S. R. Treil, The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis, Algebra i Analiz 8 (1996), no. 5, 32162. MR 99d:42026
 [NT1]
 F.Nazarov, S.Treil, The weighted norm inequalities for Hilbert transform are now trivial, C.R. Acad. Sci. Paris, Série J, 323, (1996), 717722. CMP 97:03
 [NTV]
 F.Nazarov, S.Treil, A.Volberg, Cauchy integral and CalderónZygmund operators on nonhomogeneous spaces. IMRN (Int. Math. Res. Notes.), 1997, No. 15, 703726. MR 99e:42028
 [NTV1]
 F.Nazarov, S.Treil, A.Volberg, The Bellman functions and two weight inequalities for Haar multipliers, MSRI Preprint 1997103, p. 131.
 [Ne]
 C.J. Neugebauer, Inserting weights, Proc. of the Amer. Math. Soc. 87 (1983), 644648. MR 84d:42026
 [S]
 C. Sadosky, Lifting of kernels shiftinvariant in scattering systems, Holomorphic spaces, MSRI publications, 32, 1997. MR 99e:47034
 [Sa]
 E.T. Sawyer, Norm inequalities relating singular integrals and the maximal functions, Studia Math. 75 (1983), No. 3, 253263. MR 85c:42018
 [S1]
 E.T. Sawyer, A characterization of a two weight norm inequality for maximal operators, Studia Math. 75 (1982), 111. MR 84i:42032
 [S2]
 E.T. Sawyer, A characterization of two weight norm inequality for fractional and Poisson integrals. Trans. Amer. Math. Soc. 308 (1988), 533545. MR 89d:26009
 [St]
 E.M. Stein, Harmonic analysis: realvariable methods, orthogonality, and oscillatory integrals. With the assistance of Timothy S. Murphy. Princeton Math. Series, 43, Monographs in Harmonic Analysis, Princeton Univ. Press, Princeton, NJ, 1993. MR 95c:42002
 [SW]
 E.T. Sawyer, R.L.Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. 114 (1992), 813874. MR 94i:42024
 [T]
 X. Tolsa, Boundedness of the Cauchy integral operator. Preprint, 1997.
 [TV1]
 S. Treil and A. Volberg, Wavelets and the angle between past and future, J. Funct. Anal. 143 (1997), no. 2, 269308. CMP 97:06
 [TV2]
 S.R. Treil, A.L. Volberg, Weighted embeddings and weighted norm inequalities for the Hilbert transform and the maximal operator. St. Petersburg Math. J. 7 (1996), 207226. MR 97c:42017
 [TVZ]
 S.R. Treil, A.L. Volberg, D. Zheng, Hilbert transform, Toeplitz operators and Hankel operators, and invariant weights. Revista Mat. Iberoamericana, 13 (1997), No. 2, 319360. CMP 98:11
 [VW]
 J.E. Verbitsky, R.L. Wheeden, Weighted norm inequalities for integral operators. Preprint, 1996. 125.
 [V]
 A. Volberg, Matrix weights via functions. J. Amer. Math. Soc. 10 (1997), 445466. MR 98a:42013
 [Zh]
 Dechao Zheng, The distribution function inequality and products of Toeplitz operators and Hankel operators, J. Funct. Anal. 138 (1996), no. 2, 477501. MR 97e:47040
Similar Articles
Retrieve articles in Journal of the American Mathematical Society
with MSC (1991):
42B20,
42A50,
47B35
Retrieve articles in all journals
with MSC (1991):
42B20,
42A50,
47B35
Additional Information
F. Nazarov
Affiliation:
Department of Mathematics, Michigan State University, East Lansing, Michigan 488241027
Email:
fedja@math.msu.edu
S. Treil
Affiliation:
Department of Mathematics, Michigan State University, East Lansing, Michigan 488241027
Email:
treil@math.msu.edu
A. Volberg
Affiliation:
Department of Mathematics, Michigan State University, East Lansing, Michigan 488241027
Email:
volberg@math.msu.edu
DOI:
http://dx.doi.org/10.1090/S0894034799003100
PII:
S 08940347(99)003100
Received by editor(s):
December 31, 1997
Published electronically:
June 24, 1999
Additional Notes:
This work was partially supported by NSF grant DMS 9622936, the joint IsraeliUSA grant BSF 00030, and MSRI programs of the Fall 1995 and the Fall 1997.
Article copyright:
© Copyright 1999
American Mathematical Society
