Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Algebraic families of nonzero elements
of Shafarevich-Tate groups


Authors: Jean-Louis Colliot-Thélène and Bjorn Poonen
Journal: J. Amer. Math. Soc. 13 (2000), 83-99
MSC (1991): Primary 11G10; Secondary 11G30, 11G35, 14H40, 14J27
DOI: https://doi.org/10.1090/S0894-0347-99-00315-X
Published electronically: August 20, 1999
MathSciNet review: 1697093
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Principal homogeneous spaces under an abelian variety defined over a number field $k$ may have rational points in all completions of the number field without having rational points over $k$. Such principal homogeneous spaces represent the nonzero elements of the Shafarevich-Tate group of the abelian variety.

We produce nontrivial, one-parameter families of such principal homogeneous spaces. The total space of these families are counterexamples to the Hasse principle. We show these may be accounted for by the Brauer-Manin obstruction.


References [Enhancements On Off] (What's this?)

  • [Am] M. Amer, Quadratische Formen über Funktionenkörpern, Dissertation, Mainz, 1976.
  • [Ar] M. Artin, Faisceaux constructibles. Cohomologie d'une courbe algébrique, Exposé IX, pp. 1-42 in Théorie des topos et cohomologie étale des schémas (SGA 4). Tome 3, Lecture Notes in Math., 305, Springer, Berlin, 1973. MR 50:7132
  • [BPV] W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 4, Springer-Verlag, Berlin, 1984. MR 86c:32026
  • [BLR] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 21, Springer-Verlag, Berlin, 1990. MR 91i:14034
  • [Br] A. Brumer, Remarques sur les couples de formes quadratiques, C. R. Acad. Sci. Paris 286, série A (1978), 679-681. MR 58:16502
  • [CG] J. W. S. Cassels and M. J. T. Guy, On the Hasse principle for cubic surfaces, Mathematika 13 (1966), 111-120. MR 35:2841
  • [CT] J.-L. Colliot-Thélène, The Hasse principle in a pencil of algebraic varieties, Contemporary Math. 210 (1998), 19-39. MR 98g:11075
  • [CTS] J.-L. Colliot-Thélène et J.-J. Sansuc, La descente sur les variétés rationnelles, in Journées de Géométrie Algébrique d'Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, 223-237, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980. MR 82d:14016
  • [CTKS] J.-L. Colliot-Thélène, D. Kanevsky, et J.-J. Sansuc, Arithmétique des surfaces cubiques diagonales, pp. 1-108 in Diophantine approximation and transcendence theory (Bonn, 1985), Lecture Notes in Math., 1290, Springer, Berlin, 1987. MR 89g:11051
  • [CTSSD] J.-L. Colliot-Thélène, J.-J. Sansuc, and Sir Peter Swinnerton-Dyer, Intersections of two quadrics and Châtelet surfaces. I, J. Reine Angew. Math. 373 (1987), 37-107. MR 88m:11045a
  • [DM] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math., No. 36, 1969, 75-109. MR 41:6850
  • [EGA IV] A. Grothendieck, Éléments de géométrie algébrique, rédigés avec la collaboration de J. Dieudonné. IV. Étude locale des schémas et des morphismes de schémas (Troisième Partie), Inst. Hautes Études Sci. Publ. Math., No. 28, 1966. MR 36:178
  • [Gr1] A. Grothendieck, Technique de descente et théorèmes d'existence en géométrie algébrique. V. Les schémas de Picard: théorèmes d'existence, in Séminaire Bourbaki, Vol. 7, Exp. 232, 143-161, Soc. Math. France, Paris, 1995. CMP 98:09
  • [Gr2] A. Grothendieck, Le groupe de Brauer III: exemples et compléments, pp. 88-188 in Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1968. MR 39:5586c
  • [Ha] D. Harari, Méthode des fibrations et obstruction de Manin, Duke Math. J. 75 (1994), 221-260. MR 95j:11056
  • [Ha2] D. Harari, Weak approximation and non-abelian fundamental groups, preprint, October 1998.
  • [HS] D. Harari and A. N. Skorobogatov, Non-abelian cohomology and rational points, preprint, May 1999.
  • [Ja] U. Jannsen, Principe de Hasse cohomologique, Séminaire de Théorie des Nombres, Paris, 1989-1990, Sinnou David (ed.), Progress in Mathematics 102, 1992, 121-140. MR 99a:11080
  • [Ka] N. Katz, Pinceaux de Lefschetz: théorème d'existence, Exposé XVII, pp. 212-253 in Groupes de monodromie en géométrie algébrique (SGA 7 II), Lecture Notes in Math., 340, Springer, Berlin, 1973. MR 50:7135
  • [Lic] S. Lichtenbaum, Duality theorems for curves over $p$-adic fields, Invent. math. 7 (1969), 120-136. MR 39:4158
  • [Lin] C.-E. Lind, Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins, Thesis, University of Uppsala, 1940.
  • [Liu] Q. Liu, Modèles entiers d'une courbe hyperelliptique sur un corps de valuation discrète, Trans. Amer. Math. Soc. 348 (1996), no. 11, 4577-4610. MR 97h:11062
  • [Ma1] Yu. I. Manin, Le groupe de Brauer-Grothendieck en géométrie diophantienne, in Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, 401-411, Gauthier-Villars, Paris, 1971. MR 55:356
  • [Ma2] Yu. I. Manin, Cubic forms, Translated from the Russian by M. Hazewinkel, Second edition, North-Holland, Amsterdam, 1986. MR 87d:11037
  • [Mi1] J. Milne, Étale cohomology, Princeton Univ. Press, Princeton, N.J., 1980. MR 81j:14002
  • [Mi2] J. Milne, Arithmetic duality theorems, Perspective in Mathematics 1, Academic Press, 1986. MR 88e:14028
  • [Mo] L. J. Mordell, Rational points on cubic surfaces, Publ. Math. Debrecen 1 (1949), 1-6. MR 11:82h
  • [MFK] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory. Third edition, Ergebnisse der Mathematik und ihrer Grenzgebiete, 2. Folge, Band 34, Springer-Verlag, Berlin, 1994. MR 95m:14012
  • [PS] B. Poonen and M. Stoll, The Cassels-Tate pairing on polarized abelian varieties, to appear in Ann. of Math.
  • [Re] H. Reichardt, Einige im Kleinen überall lösbare, im Grossen unlösbare diophantische Gleichungen, J. Reine Angew. Math. 184 (1942), 12-18. MR 5:141c
  • [Sc] C. Scheiderer, Real and étale Cohomology, Lecture Notes in Math., Vol. 1588, Springer, Berlin, 1994. MR 96c:14018
  • [ST] J.-P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492-517. MR 38:4488
  • [SGA4] SGA 4, Théorie des topos et cohomologie étale des schémas, Tome 1. Théorie des topos. Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964. Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. Lecture Notes in Mathematics, Vol. 269, Springer-Verlag, Berlin-New York, 1972.
  • [Sk] A. N. Skorobogatov, Beyond the Manin obstruction, Invent. Math. 135 (1999), no. 2, 399-424. CMP 99:07
  • [SD1] H. P. F. Swinnerton-Dyer, Two special cubic surfaces, Mathematika 9 (1962), 54-56. MR 25:3413
  • [SD2] Sir Peter Swinnerton-Dyer, The Brauer group of cubic surfaces, Math. Proc. Cambridge Philos. Soc. 113 (1993), no. 3, 449-460. MR 94a:14038
  • [vGY] J. van Geel and V. Yanchevski[??]i, Indices of hyperelliptic curves over $p$-adic fields, Manuscripta Math. 96 (1998), 317-333. MR 99e:11084

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 11G10, 11G30, 11G35, 14H40, 14J27

Retrieve articles in all journals with MSC (1991): 11G10, 11G30, 11G35, 14H40, 14J27


Additional Information

Jean-Louis Colliot-Thélène
Affiliation: C.N.R.S., Mathématiques, Bâtiment 425, Université de Paris-Sud, F-91405 Orsay, France
Email: colliot@math.u-psud.fr

Bjorn Poonen
Affiliation: C.N.R.S., Mathématiques, Bâtiment 425, Université de Paris-Sud, F-91405 Orsay, France
Email: poonen@math.berkeley.edu

DOI: https://doi.org/10.1090/S0894-0347-99-00315-X
Keywords: Shafarevich-Tate group, Brauer-Manin obstruction, Hasse principle, cubic surface, Cassels-Tate pairing, Lefschetz pencil
Received by editor(s): January 8, 1999
Received by editor(s) in revised form: June 9, 1999
Published electronically: August 20, 1999
Additional Notes: Most of the research for this paper was done while the authors were both enjoying the hospitality of the Isaac Newton Institute, Cambridge, England. The first author is a researcher at C.N.R.S. The second author is partially supported by NSF grant DMS-9801104, a Sloan Fellowship, and a Packard Fellowship.
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society