Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

Two-primary algebraic $K$-theory
of rings of integers in number fields


Authors: J. Rognes, C. Weibel and appendix by M. Kolster
Journal: J. Amer. Math. Soc. 13 (2000), 1-54
MSC (2000): Primary 19D50; Secondary 11R70, 11S70, 14F20, 19F27
Published electronically: August 23, 1999
MathSciNet review: 1697095
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We relate the algebraic $K$-theory of the ring of integers in a number field $F$ to its étale cohomology. We also relate it to the zeta-function of $F$ when $F$ is totally real and Abelian. This establishes the $2$-primary part of the ``Lichtenbaum conjectures.'' To do this we compute the $2$-primary $K$-groups of $F$ and of its ring of integers, using recent results of Voevodsky and the Bloch-Lichtenbaum spectral sequence, modified for finite coefficients in an appendix. A second appendix, by M. Kolster, explains the connection to the zeta-function and Iwasawa theory.


References [Enhancements On Off] (What's this?)

  • [A] J. F. Adams, On the groups 𝐽(𝑋). IV, Topology 5 (1966), 21–71. MR 0198470
  • [Bl] Spencer Bloch, Algebraic cycles and higher 𝐾-theory, Adv. in Math. 61 (1986), no. 3, 267–304. MR 852815, 10.1016/0001-8708(86)90081-2
  • [BL] S. Bloch and S. Lichtenbaum, A spectral sequence for motivic cohomology, Invent. Math. (to appear).
  • [Bo] Armand Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235–272 (1975). MR 0387496
  • [CF] Algebraic number theory, Proceedings of an instructional conference organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of the Inter national Mathematical Union. Edited by J. W. S. Cassels and A. Fröhlich, Academic Press, London; Thompson Book Co., Inc., Washington, D.C., 1967. MR 0215665
  • [DF] William G. Dwyer and Eric M. Friedlander, Algebraic and etale 𝐾-theory, Trans. Amer. Math. Soc. 292 (1985), no. 1, 247–280. MR 805962, 10.1090/S0002-9947-1985-0805962-2
  • [FV] E. Friedlander and V. Voevodsky, Bivariant cycle cohomology, UIUC K-theory preprint server, no. 75, 1995.
  • [Ga] Ofer Gabber, 𝐾-theory of Henselian local rings and Henselian pairs, Algebraic 𝐾-theory, commutative algebra, and algebraic geometry (Santa Margherita Ligure, 1989) Contemp. Math., vol. 126, Amer. Math. Soc., Providence, RI, 1992, pp. 59–70. MR 1156502, 10.1090/conm/126/00509
  • [Gri] Cornelius Greither, Class groups of abelian fields, and the main conjecture, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 3, 449–499 (English, with English and French summaries). MR 1182638
  • [HS] B. Harris and G. Segal, 𝐾ᵢ groups of rings of algebraic integers, Ann. of Math. (2) 101 (1975), 20–33. MR 0387379
  • [H] Raymond T. Hoobler, When is 𝐵𝑟(𝑋)=𝐵𝑟′(𝑋)?, Brauer groups in ring theory and algebraic geometry (Wilrijk, 1981), Lecture Notes in Math., vol. 917, Springer, Berlin-New York, 1982, pp. 231–244. MR 657433
  • [J] Uwe Jannsen, Continuous étale cohomology, Math. Ann. 280 (1988), no. 2, 207–245. MR 929536, 10.1007/BF01456052
  • [K1] Bruno Kahn, Some conjectures on the algebraic 𝐾-theory of fields. I. 𝐾-theory with coefficients and étale 𝐾-theory, Algebraic 𝐾-theory: connections with geometry and topology (Lake Louise, AB, 1987) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 279, Kluwer Acad. Publ., Dordrecht, 1989, pp. 117–176. MR 1045848
  • [K2] -, The Quillen-Lichtenbaum Conjecture at the prime $2$, UIUC K-theory preprint server, no. 208, 1997.
  • [L1] Stephen Lichtenbaum, On the values of zeta and 𝐿-functions. I, Ann. of Math. (2) 96 (1972), 338–360. MR 0360527
  • [L2] Stephen Lichtenbaum, Values of zeta-functions, étale cohomology, and algebraic 𝐾-theory, Algebraic 𝐾-theory, II: “Classical” algebraic 𝐾-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 489–501. Lecture Notes in Math., Vol. 342. MR 0406981
  • [M1] James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
  • [M2] J. S. Milne, Arithmetic duality theorems, Perspectives in Mathematics, vol. 1, Academic Press, Inc., Boston, MA, 1986. MR 881804
  • [NS] Yu. P. Nesterenko and A. A. Suslin, Homology of the general linear group over a local ring, and Milnor’s 𝐾-theory, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 121–146 (Russian); English transl., Math. USSR-Izv. 34 (1990), no. 1, 121–145. MR 992981
  • [N] Jürgen Neukirch, Class field theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 280, Springer-Verlag, Berlin, 1986. MR 819231
  • [P] I. A. Panin, The Hurewicz theorem and 𝐾-theory of complete discrete valuation rings, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 763–775, 878 (Russian). MR 864175
  • [Q1] Daniel Quillen, On the cohomology and 𝐾-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552–586. MR 0315016
  • [Q2] Daniel Quillen, Higher algebraic 𝐾-theory. I, Algebraic 𝐾-theory, I: Higher 𝐾-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 85–147. Lecture Notes in Math., Vol. 341. MR 0338129
  • [Q3] Daniel Quillen, Finite generation of the groups 𝐾ᵢ of rings of algebraic integers, Algebraic 𝐾-theory, I: Higher 𝐾-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 179–198. Lecture Notes in Math., Vol. 341. MR 0349812
  • [Q4] Daniel Quillen, Higher algebraic 𝐾-theory, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 171–176. MR 0422392
  • [Q5] D. Quillen, Letter from Quillen to Milnor on 𝐼𝑚(𝜋ᵢ𝑂→𝜋ᵢ^{𝑠}→𝐾ᵢ𝑍), Algebraic 𝐾-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), Springer, Berlin, 1976, pp. 182–188. Lecture Notes in Math., Vol. 551. MR 0482758
  • [R] J. Rognes, Algebraic $K$-theory of the two-adic integers, J. Pure Appl. Algebra 134 (1999), 219-286. CMP 99:06
  • [RO] J. Rognes and P. A. Østvær, Two-primary algebraic $K$-theory of two-regular number fields, Math. Z. (to appear).
  • [RW] J. Rognes and C. Weibel, Étale descent for two-primary algebraic $K$-theory of totally imaginary number fields, $K$-Theory 16 (1999), 101-104. CMP 99:08
  • [Sc] Peter Schneider, Über gewisse Galoiscohomologiegruppen, Math. Z. 168 (1979), no. 2, 181–205 (German). MR 544704, 10.1007/BF01214195
  • [Se] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237
  • [So] C. Soulé, 𝐾-théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), no. 3, 251–295 (French). MR 553999, 10.1007/BF01406843
  • [S1] A. Suslin, On the 𝐾-theory of algebraically closed fields, Invent. Math. 73 (1983), no. 2, 241–245. MR 714090, 10.1007/BF01394024
  • [S2] -, Higher Chow groups and étale cohomology, Preprint, 1994.
  • [S3] Andrei Suslin, Algebraic 𝐾-theory and motivic cohomology, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 342–351. MR 1403935
  • [SV] A. A. Suslin and V. Voevodsky, The Bloch-Kato conjecture and motivic cohomology with finite coefficients, UIUC K-theory preprint server, no. 83, 1995.
  • [T] John Tate, Duality theorems in Galois cohomology over number fields, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 288–295. MR 0175892
  • [V1] V. Voevodsky, Triangulated categories of motives over a field, UIUC K-theory preprint server, no. 74, 1995.
  • [V2] -, The Milnor Conjecture, UIUC K-theory preprint server, no. 170, 1996.
  • [Wg] J. B. Wagoner, Continuous cohomology and 𝑝-adic 𝐾-theory, Algebraic K-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), Springer, Berlin, 1976, pp. 241–248. Lecture Notes in Math., Vol. 551. MR 0498502
  • [Ws] Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674
  • [W1] Charles Weibel, Étale Chern classes at the prime 2, Algebraic 𝐾-theory and algebraic topology (Lake Louise, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 407, Kluwer Acad. Publ., Dordrecht, 1993, pp. 249–286. MR 1367303, 10.1007/978-94-017-0695-7_14
  • [W2] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324
  • [W3] Charles Weibel, The 2-torsion in the 𝐾-theory of the integers, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 6, 615–620 (English, with English and French summaries). MR 1447030, 10.1016/S0764-4442(97)86977-7
  • [Wi] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), no. 3, 493–540. MR 1053488, 10.2307/1971468

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 19D50, 11R70, 11S70, 14F20, 19F27

Retrieve articles in all journals with MSC (2000): 19D50, 11R70, 11S70, 14F20, 19F27


Additional Information

J. Rognes
Affiliation: Department of Mathematics, University of Oslo, Oslo, Norway
Email: rognes@math.uio.no

C. Weibel
Affiliation: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903-2101
Email: weibel@math.rutgers.edu

appendix by M. Kolster
Affiliation: Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1
Email: kolster@mcmail.CIS.McMaster.CA

DOI: http://dx.doi.org/10.1090/S0894-0347-99-00317-3
Keywords: Two-primary algebraic $K$-theory, number fields, Lichtenbaum--Quillen conjectures, étale cohomology, motivic cohomology, Bloch--Lichtenbaum spectral sequence
Received by editor(s): July 13, 1998
Published electronically: August 23, 1999
Article copyright: © Copyright 1999 American Mathematical Society