Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Two-primary algebraic $K$-theory
of rings of integers in number fields


Authors: J. Rognes, C. Weibel and appendix by M. Kolster
Journal: J. Amer. Math. Soc. 13 (2000), 1-54
MSC (2000): Primary 19D50; Secondary 11R70, 11S70, 14F20, 19F27
DOI: https://doi.org/10.1090/S0894-0347-99-00317-3
Published electronically: August 23, 1999
MathSciNet review: 1697095
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We relate the algebraic $K$-theory of the ring of integers in a number field $F$ to its étale cohomology. We also relate it to the zeta-function of $F$ when $F$ is totally real and Abelian. This establishes the $2$-primary part of the ``Lichtenbaum conjectures.'' To do this we compute the $2$-primary $K$-groups of $F$ and of its ring of integers, using recent results of Voevodsky and the Bloch-Lichtenbaum spectral sequence, modified for finite coefficients in an appendix. A second appendix, by M. Kolster, explains the connection to the zeta-function and Iwasawa theory.


References [Enhancements On Off] (What's this?)

  • [A] J. F. Adams, On the groups $J(X)$. IV, Topology 5 (1966), 21-71. MR 33:6628
  • [Bl] S. Bloch, Algebraic cycles and higher $K$-theory, Adv. Math. 61 (1986), 267-304. MR 88f:18010
  • [BL] S. Bloch and S. Lichtenbaum, A spectral sequence for motivic cohomology, Invent. Math. (to appear).
  • [Bo] A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. Ecole Norm. Sup. 7 (1974), 235-272. MR 52:8338
  • [CF] J. W. S. Cassels and A. Frölich, eds., Algebraic Number Theory, Academic Press, 1967. MR 35:6500
  • [DF] W. Dwyer and E. Friedlander, Algebraic and étale $K$-theory, Trans. AMS 292 (1985), 247-280. MR 87h:18013
  • [FV] E. Friedlander and V. Voevodsky, Bivariant cycle cohomology, UIUC K-theory preprint server, no. 75, 1995.
  • [Ga] O. Gabber, $K$-theory of Henselian local rings and Henselian pairs, AMS Contemp. Math., vol. 126, 1992, pp. 59-70. MR 93c:19005
  • [Gri] C. Greither, Class groups of Abelian fields, and the Main Conjecture, Ann. Inst. Fourier, Grenoble 42 (1992), 449-499. MR 93j:11071
  • [HS] B. Harris and G. Segal, $K_{i}$ groups of rings of algebraic integers, Annals of Math. 101 (1975), 20-33. MR 52:8222
  • [H] R. T. Hoobler, When is $\operatorname {Br}(X) = \operatorname {Br}'(X)$ ?, Lecture Notes in Math., vol. 917, Springer Verlag, 1982, pp. 231-244. MR 83g:14006
  • [J] U. Jannsen, Continuous étale cohomology, Math. Ann. 280 (1988), 207-245. MR 89a:14022
  • [K1] B. Kahn, Some conjectures on the algebraic $K$-theory of fields I: $K$-theory with coefficients and étale cohomology, Algebraic $K$-theory: Connections with Geometry and Topology (J. F. Jardine and V. P. Snaith, eds.), NATO ASI Series C, vol. 279, Kluwer, 1989, pp. 117-176. MR 91d:19006
  • [K2] -, The Quillen-Lichtenbaum Conjecture at the prime $2$, UIUC K-theory preprint server, no. 208, 1997.
  • [L1] S. Lichtenbaum, On the values of zeta and $L$-functions, I, Annals of Math. 96 (1972), 338-360. MR 50:12975
  • [L2] -, Values of zeta functions, étale cohomology, and algebraic $K$-theory, Lecture Notes in Math., vol. 342, Springer Verlag, 1973, pp. 489-501. MR 53:10765
  • [M1] J. S. Milne, Étale Cohomology, Princeton University Press, 1980. MR 81j:14002
  • [M2] -, Arithmetic Duality Theorems, Academic Press, 1986. MR 88e:14028
  • [NS] Yu. P. Nesterenko and A. A. Suslin, Homology of the general linear group over a local ring, and Milnor's $K$-theory (Russian), Izv. Akad. Nauk. SSSR Ser. Mat. 53 (1989), 121-146. MR 90a:20092
  • [N] J. Neukirch, Class Field Theory, Grundlehren der mathematischen Wissenschaften, vol. 280, Springer Verlag, 1986. MR 87i:11005
  • [P] I. Panin, On a theorem of Hurewicz and $K$-theory of complete discrete valuation rings, Math. USSR Izvestiya 29 (1987), 119-131. MR 88a:18021
  • [Q1] D. Quillen, On the cohomology and $K$-theory of the general linear group over a finite field, Annals of Math. 96 (1972), 552-586. MR 47:3565
  • [Q2] -, Higher algebraic $K$-theory, I, Lecture Notes in Math., vol. 341, Springer Verlag, 1973, pp. 85-147. MR 49:2895
  • [Q3] -, Finite generation of the groups $K_{i}$ of rings of algebraic integers, Lecture Notes in Math., vol. 341, Springer Verlag, 1973, pp. 179-198. MR 50:2305
  • [Q4] -, Higher algebraic $K$-theory, Proc. Intern. Congress Math., Vancouver, 1974, vol. I, Canad. Math. Soc., 1975, pp. 171-176. MR 54:10382
  • [Q5] -, Letter from Quillen to Milnor on $\operatorname {Im}(\pi _{i} O \to \pi _{i}^{S} \to K_{i}\mathbb Z)$, Lecture Notes in Math., vol. 551, Springer Verlag, 1976, pp. 182-188. MR 58:2811
  • [R] J. Rognes, Algebraic $K$-theory of the two-adic integers, J. Pure Appl. Algebra 134 (1999), 219-286. CMP 99:06
  • [RO] J. Rognes and P. A. Østvær, Two-primary algebraic $K$-theory of two-regular number fields, Math. Z. (to appear).
  • [RW] J. Rognes and C. Weibel, Étale descent for two-primary algebraic $K$-theory of totally imaginary number fields, $K$-Theory 16 (1999), 101-104. CMP 99:08
  • [Sc] P. Schneider, Über gewisse Galoiscohomologiegruppen, Math. Z. 168 (1979), 181-205. MR 81i:12010
  • [Se] J.-P. Serre, Local Fields, Graduate Texts in Mathematics, vol. 67, Springer Verlag, 1979. MR 82e:12016
  • [So] C. Soulé, $K$-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), 251-295. MR 81i:12016
  • [S1] A. A. Suslin, On the $K$-theory of algebraically closed fields, Invent. Math. 73 (1983), 241-245. MR 85h:18008a
  • [S2] -, Higher Chow groups and étale cohomology, Preprint, 1994.
  • [S3] -, Algebraic $K$-theory and motivic cohomology, Proc. Intern. Congress Math., Zürich, 1994, Birkhäuser, 1995, pp. 342-351. MR 98g:19007
  • [SV] A. A. Suslin and V. Voevodsky, The Bloch-Kato conjecture and motivic cohomology with finite coefficients, UIUC K-theory preprint server, no. 83, 1995.
  • [T] J. Tate, Duality theorems in Galois cohomology over number fields, Proc. Intern. Congress Math., Stockholm, 1962, Inst. Mittag-Leffler, 1963, pp. 234-241. MR 31:168
  • [V1] V. Voevodsky, Triangulated categories of motives over a field, UIUC K-theory preprint server, no. 74, 1995.
  • [V2] -, The Milnor Conjecture, UIUC K-theory preprint server, no. 170, 1996.
  • [Wg] J. B. Wagoner, Continuous cohomology and $p$-adic $K$-theory, Lecture Notes in Math., vol. 551, Springer Verlag, 1976, pp. 241-248. MR 58:16609
  • [Ws] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, vol. 83, Springer Verlag, 1982. MR 85g:11001
  • [W1] C. Weibel, Étale Chern classes at the prime $2$, Algebraic $K$-theory and Algebraic Topology (P. Goerss and J. F. Jardine, eds.), NATO ASI Series C, vol. 407, Kluwer, 1993, pp. 249-286. MR 96m:19013
  • [W2] -, An introduction to homological algebra, Cambridge Univ. Press, 1994. MR 95f:18001
  • [W3] -, The $2$-torsion in the $K$-theory of the integers, C. R. Acad. Sci. Paris 324 (1997), 615-620. MR 98h:19001
  • [Wi] A. Wiles, The Iwasawa Conjecture for totally real fields, Annals of Math. 131 (1990), 493-540. MR 91i:11163

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 19D50, 11R70, 11S70, 14F20, 19F27

Retrieve articles in all journals with MSC (2000): 19D50, 11R70, 11S70, 14F20, 19F27


Additional Information

J. Rognes
Affiliation: Department of Mathematics, University of Oslo, Oslo, Norway
Email: rognes@math.uio.no

C. Weibel
Affiliation: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903-2101
Email: weibel@math.rutgers.edu

appendix by M. Kolster
Affiliation: Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1
Email: kolster@mcmail.CIS.McMaster.CA

DOI: https://doi.org/10.1090/S0894-0347-99-00317-3
Keywords: Two-primary algebraic $K$-theory, number fields, Lichtenbaum--Quillen conjectures, étale cohomology, motivic cohomology, Bloch--Lichtenbaum spectral sequence
Received by editor(s): July 13, 1998
Published electronically: August 23, 1999
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society