Symmetric spectra>

Authors:
Mark Hovey, Brooke Shipley and Jeff Smith

Journal:
J. Amer. Math. Soc. **13** (2000), 149-208

MSC (2000):
Primary 55P42, 55U10, 55U35

DOI:
https://doi.org/10.1090/S0894-0347-99-00320-3

Published electronically:
September 22, 1999

MathSciNet review:
1695653

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The stable homotopy category, much studied by algebraic topologists, is a closed symmetric monoidal category. For many years, however, there has been no well-behaved closed symmetric monoidal category of spectra whose homotopy category is the stable homotopy category. In this paper, we present such a category of spectra; the category of symmetric spectra. Our method can be used more generally to invert a monoidal functor, up to homotopy, in a way that preserves monoidal structure. Symmetric spectra were discovered at about the same time as the category of -modules of Elmendorf, Kriz, Mandell, and May, a completely different symmetric monoidal category of spectra.

**[Ada74]**J. F. Adams,*Stable homotopy and generalised homology*, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1974, x+373 pp. MR**53:6534****[Bök85]**M. Bökstedt,*Topological Hochschild homology*, preprint, 1985.**[Bor94]**Francis Borceux,*Handbook of categorical algebra. 2. Categories and structures*, Encyclopedia of Mathematics and its Applications, vol. 51, Cambridge University Press, Cambridge, 1994. MR**96g:18001b****[BF78]**A. K. Bousfield and E. M. Friedlander,*Homotopy theory of -spaces, spectra, and bisimplicial sets*, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II (M. G. Barratt and M. E. Mahowald, eds.), Lecture Notes in Math., vol. 658, Springer, Berlin, 1978, pp. 80-130. MR**80e:55021****[Cur71]**Edward B. Curtis,*Simplicial homotopy theory*, Advances in Math.**6**(1971), 107-209. MR**43:5529****[DHK]**W. G. Dwyer, P. S. Hirschhorn, and D. M. Kan,*Model categories and general abstract homotopy theory*, in preparation.**[DS]**W. G. Dwyer and Brooke E. Shipley,*Hyper symmetric spectra*, in preparation.**[DS95]**W. G. Dwyer and J. Spalinski,*Homotopy theories and model categories*, Handbook of algebraic topology (Amsterdam), North-Holland, Amsterdam, 1995, pp. 73-126. MR**96h:55014****[EKMM97]**A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May,*Rings, modules, and algebras in stable homotopy theory. With an appendix by M. Cole*, Mathematical Surveys and Monographs, vol. 47, American Mathematical Society, Providence, RI, 1997, xii+249 pp. MR**97h:55006****[GH97]**Thomas Geisser and Lars Hesselholt,*Topological cyclic homology of schemes*, to appear in K-theory, Seattle, 1996 volume of Proc. Symp. Pure Math.**[Hir99]**P. S. Hirschhorn,*Localization of model categories*, preprint, 1999.**[Hov98a]**Mark Hovey,*Model categories*, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1998. MR**99h:55031****[Hov98b]**Mark Hovey,*Stabilization of model categories*, preprint, 1998.**[HPS97]**Mark Hovey, John H. Palmieri, and Neil P. Strickland,*Axiomatic stable homotopy theory*, Mem. Amer. Math. Soc.**128**(1997), no. 610. MR**98a:55017****[Lew91]**L. Gaunce Lewis, Jr.,*Is there a convenient category of spectra?*, J. Pure Appl. Algebra**73**(1991), 233-246. MR**92f:55008****[Lim59]**Elon L. Lima,*The Spanier-Whitehead duality in new homotopy categories*, Summa Brasil. Math.**4**(1959), 91-148. MR**22:7121****[ML71]**S. Mac Lane,*Categories for the working mathematician*, Graduate Texts in Mathematics, vol. 5, Springer-Verlag, 1971. MR**50:7275****[MMSS98a]**M. Mandell, J. P. May, B. Shipley, and S. Schwede,*Diagram spaces, diagram spectra and FSPs*, preprint, 1998.**[MMSS98b]**M. Mandell, J. P. May, B. Shipley, and S. Schwede,*Model categories of diagram spectra*, preprint, 1998.**[May67]**J. P. May,*Simplicial objects in algebraic topology*, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill., 1967, viii+161pp. MR**36:5942****[Qui67]**Daniel G. Quillen,*Homotopical algebra*, Lecture Notes in Mathematics, vol. 43, Springer-Verlag, 1967. MR**36:6480****[Sch98]**Stefan Schwede,*S-modules and symmetric spectra*, preprint, 1998.**[SS]**Stefan Schwede and Brooke Shipley,*Classification of stable model categories*, in preparation.**[SS97]**Stefan Schwede and Brooke Shipley,*Algebras and modules in monoidal model categories*, to appear in Proc. London Math. Soc.**[Shi]**B. Shipley,*Symmetric spectra and topological Hochschild homology*, to appear in K-theory.**[Voe97]**V. Voevodsky,*The Milnor conjecture*, preprint, 1997.**[Vog70]**R. Vogt,*Boardman's stable homotopy category*, Aarhus Univ. Lect. Notes, vol. 21, Aarhus University, 1970. MR**43:1187****[Wal85]**F. Waldhausen,*Algebraic K-theory of spaces*, Lecture Notes in Mathematics, vol. 1126, Springer-Verlag, 1985, pp. 318-419. MR**86m:18011****[Whi62]**G. W. Whitehead,*Generalized homology theories*, Trans. Amer. Math. Soc.**102**(1962), 227-283. MR**25:573**

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (2000):
55P42,
55U10,
55U35

Retrieve articles in all journals with MSC (2000): 55P42, 55U10, 55U35

Additional Information

**Mark Hovey**

Affiliation:
Department of Mathematics, Wesleyan University, Middletown, Connectitut 06459

Email:
hovey@member.ams.org

**Brooke Shipley**

Affiliation:
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

Email:
bshipley@math.purdue.edu

**Jeff Smith**

Email:
jhs@math.purdue.edu

DOI:
https://doi.org/10.1090/S0894-0347-99-00320-3

Received by editor(s):
March 31, 1998

Received by editor(s) in revised form:
July 7, 1999

Published electronically:
September 22, 1999

Additional Notes:
The first two authors were partially supported by NSF Postdoctoral Fellowships

The third author was partially supported by an NSF Grant.

Article copyright:
© Copyright 1999
American Mathematical Society